IDEAS home Printed from
   My bibliography  Save this article

Oscillator with random trichotomous mass


  • Gitterman, M.


In addition to the case usually considered of a stochastic harmonic oscillator subject to an external random force (Brownian motion in a parabolic potential) or to a random frequency and random damping, we consider an oscillator with random mass subject to an external periodic force, where the molecules of a surrounding medium, which collide with a Brownian particle are able to adhere to the oscillator for a random time, changing thereby the oscillator mass. The fluctuations of mass are modelled as trichotomous noise. Using the Shapiro–Loginov procedure for splitting the correlators, we found the first two moments. It turns out that the second moment is a non-monotonic function of the characteristics of noise and periodic signal, and for some values of these parameters, the oscillator becomes unstable.

Suggested Citation

  • Gitterman, M., 2012. "Oscillator with random trichotomous mass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5343-5348.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5343-5348
    DOI: 10.1016/j.physa.2012.05.051

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5343-5348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.