Author
Listed:
- Zamparo, M.
- Stramaglia, S.
- Banavar, J.R.
- Maritan, A.
Abstract
Factor analysis is a well known statistical method to describe the variability among observed variables in terms of a smaller number of unobserved latent variables called factors. While dealing with multivariate time series, the temporal correlation structure of data may be modeled by including correlations in latent factors, but a crucial choice is the covariance function to be implemented. We show that analyzing multivariate time series in terms of latent Gaussian processes, which are mutually independent but with each of them being characterized by exponentially decaying temporal correlations, leads to an efficient implementation of the expectation–maximization algorithm for the maximum likelihood estimation of parameters, due to the properties of block-tridiagonal matrices. The proposed approach solves an ambiguity known as the identifiability problem, which renders the solution of factor analysis determined only up to an orthogonal transformation. Samples with just two temporal points are sufficient for the parameter estimation: hence the proposed approach may be applied even in the absence of prior information about the correlation structure of latent variables by fitting the model to pairs of points with varying time delay. Our modeling allows one to make predictions of the future values of time series and we illustrate our method by applying it to an analysis of published gene expression data from cell culture HeLa.
Suggested Citation
Zamparo, M. & Stramaglia, S. & Banavar, J.R. & Maritan, A., 2012.
"Inverse problem for multivariate time series using dynamical latent variables,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3159-3169.
Handle:
RePEc:eee:phsmap:v:391:y:2012:i:11:p:3159-3169
DOI: 10.1016/j.physa.2012.01.037
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
References listed on IDEAS
- repec:ucp:bkecon:9780226316529 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:11:p:3159-3169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.