Author
Listed:
- Seuront, Laurent
- Cribb, Nardi
Abstract
The stress induced in the Indo–Pacific bottlenose dolphin, Tursiops aduncus, by boat presence and type was investigated in a highly urbanized coastal environment, the Port Adelaide River-Barker Inlet Estuary, South Australia. The level of stress experienced by bottlenose dolphins was inferred from the distribution patterns of their dive durations. Dive duration has previously been shown to increase under boat traffic conditions, and is considered as a typical avoidance behavior. Dive durations were opportunistically recorded from land-based stations between January 2008 and October 2010 in the absence of boat traffic, and in the presence of kayaks, inflatable motor boats, powerboats and fishing boats. Subsequent analyses were based on nearly 6000 behavioral observations. No significant differences in dive durations were found between control observations (i.e. absence of boats) and boat interferences, which could erroneously lead to conclude that boat traffic did not induce any stress in T. aduncus. In contrast, the scaling exponents of the cumulative probability distribution of dive durations obtained in the absence of boat traffic and under different conditions of boat interferences show (i) that the presence of boats affected the complexity of dive duration patterns and (ii) that stress levels were a function of boat type. Specifically, the complexity of dive duration patterns (estimated by the scaling exponent ϕ) did not significantly differ between control behavioral observations and behavioral observations conducted in the presence of kayaks. A significant increased in behavioral stress (i.e. decreasing values of ϕ) was, however, induced by the presence of fishing boats, motorized inflatable boats and powerboats. This demonstrates that traditional approaches based on the analysis of averaged behavioral metrics may not be sensitive enough to detect changes in the distribution pattern of behavioral sequences, hence underestimate the potential consequences of e.g. chronic exposure to low levels of stress. It is finally emphasized that fractal analyses of behavioral variables, and in particular the analysis of their cumulative probability distribution function, may provide a non-invasive, objective and quantitative framework that can be used to assess the changes in stress response, and subsequently evaluate the welfare status of organisms under various conditions of abiotic and/or biotic stress.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Perisho, Shaun T. & Kelty-Stephen, Damian G. & Hajnal, Alen & Houser, Dorian & Kuczaj II, Stan A., 2016.
"Fractal scaling in bottlenose dolphin (Tursiops truncatus) echolocation: A case study,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 221-230.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:12:p:2333-2339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.