Author
Abstract
We study time dependent correlation functions of ideal classical and quantum gases using methods of equilibrium statistical mechanics. The basis for this is the path integral formalism of quantum mechanical systems. By this approach the statistical mechanics of a quantum mechanical system becomes the equivalent of a classical polymer problem in four dimensions where imaginary time is the fourth dimension. Several non-trivial results for quantum systems have been obtained earlier by this analogy. Here we will focus upon particle dynamics. First ideal gases are considered. Then interactions, that are assumed weak and of long range, are added, and methods of classical statistical mechanics are applied to obtain the leading contribution. Comparison is performed with known results of kinetic theory. These results demonstrate how methods developed for systems in thermal equilibrium also is applicable outside equilibrium. Thus, more generally, we have reason to expect that these methods will be accurate and useful for other situations of interacting many-body systems consisting of quantized particles too. To indicate so we sketch the computation of the induced Casimir force between parallel plates filled with ions for the situation where the ions are quantized, but the interaction remains electrostatic. Further in this respect we establish expressions for a leading correction to ab initio calculations for the energies of the quantized electrons of molecules. To our knowledge these two latter applications go beyond earlier results.
Suggested Citation
Høye, J.S., 2010.
"Dynamical pair correlations of classical and quantum fluids perturbed with weak long-range forces,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1380-1390.
Handle:
RePEc:eee:phsmap:v:389:y:2010:i:7:p:1380-1390
DOI: 10.1016/j.physa.2009.12.003
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:7:p:1380-1390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.