IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i3p561-576.html
   My bibliography  Save this article

Stochastic epidemics and rumours on finite random networks

Author

Listed:
  • Isham, Valerie
  • Harden, Simon
  • Nekovee, Maziar

Abstract

In this paper, we investigate the stochastic spread of epidemics and rumours on networks. We focus on the general stochastic (SIR) epidemic model and a recently proposed rumour model on networks in Nekovee et al. (2007) [3], and on networks with different random structures, taking into account the structure of the underlying network at the level of the degree–degree correlation function. Using embedded Markov chain techniques and ignoring density correlations between neighbouring nodes, we derive a set of equations for the final size of the epidemic/rumour on a homogeneous network that can be solved numerically, and compare the resulting distribution with the solution of the corresponding mean-field deterministic model. The final size distribution is found to switch from unimodal to bimodal form (indicating the possibility of substantial spread of the epidemic/rumour) at a threshold value that is higher than that for the deterministic model. However, the difference between the two thresholds decreases with the network size, n, following a n−1/3 behaviour. We then compare results (obtained by Monte Carlo simulation) for the full stochastic model on a homogeneous network, including density correlations at neighbouring nodes, with those for the approximating stochastic model and show that the latter reproduces the exact simulation results with great accuracy. Finally, further Monte Carlo simulations of the full stochastic model are used to explore the effects on the final size distribution of network size and structure (using homogeneous networks, simple random graphs and the Barabasi–Albert scale-free networks).

Suggested Citation

  • Isham, Valerie & Harden, Simon & Nekovee, Maziar, 2010. "Stochastic epidemics and rumours on finite random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 561-576.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:3:p:561-576
    DOI: 10.1016/j.physa.2009.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008334
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    3. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.
    4. Hütt, Marc-Thorsten & Jain, Mitul K. & Hilgetag, Claus C. & Lesne, Annick, 2012. "Stochastic resonance in discrete excitable dynamics on graphs," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 611-618.
    5. Maria Gamboa & Maria Jesus Lopez-Herrero, 2018. "On the Number of Periodic Inspections During Outbreaks of Discrete-Time Stochastic SIS Epidemic Models," Mathematics, MDPI, vol. 6(8), pages 1-13, July.
    6. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    7. Lan, Yuexin & Lian, Zhixuan & Zeng, Runxi & Zhu, Di & Xia, Yixue & Liu, Mo & Zhang, Peng, 2020. "A statistical model of the impact of online rumors on the information quantity of online public opinion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    8. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    9. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    10. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    11. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    12. Daniel A Sprague & Thomas House, 2017. "Evidence for complex contagion models of social contagion from observational data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-12, July.
    13. Bodaghi, Amirhosein & Goliaei, Sama & Salehi, Mostafa, 2019. "The number of followings as an influential factor in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 167-184.
    14. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Zhang, Ding & Ma, Ting & Chen, Yucheng & Wang, Jiajia, 2012. "The impact of authorities’ media and rumor dissemination on the evolution of emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3978-3987.
    15. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    16. Jain, Ankur & Dhar, Joydip & Gupta, Vijay, 2019. "Stochastic model of rumor propagation dynamics on homogeneous social network with expert interaction and fluctuations in contact transmissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 227-236.
    17. Maeno, Yoshiharu, 2011. "Discovery of a missing disease spreader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3412-3426.
    18. Sun, Ling & Liu, Yun & Bartolacci, Michael R. & Ting, I-Hsien, 2016. "A multi information dissemination model considering the interference of derivative information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 541-548.
    19. Afassinou, Komi, 2014. "Analysis of the impact of education rate on the rumor spreading mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 43-52.
    20. Zhao, Laijun & Wang, Jiajia & Huang, Rongbing & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli, 2014. "Sentiment contagion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 17-23.
    21. Franco Bagnoli & Emanuele Bellini & Emanuele Massaro & Raúl Rechtman, 2019. "Percolation and Internet Science," Future Internet, MDPI, vol. 11(2), pages 1-26, February.
    22. Amirhosein Bodaghi & Sama Goliaei, 2018. "A Novel Model For Rumor Spreading On Social Networks With Considering The Influence Of Dissenting Opinions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    3. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    4. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    5. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    6. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    7. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    8. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    9. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    10. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    11. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    13. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    14. Zhu, He & Ma, Jing, 2019. "Analysis of SHIR rumor propagation in random heterogeneous networks with dynamic friendships," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 257-271.
    15. Ran, Maojie & Chen, Jiancu, 2021. "An information dissemination model based on positive and negative interference in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Yao, Yao & Xiao, Xi & Zhang, Chengping & Dou, Changsheng & Xia, Shutao, 2019. "Stability analysis of an SDILR model based on rumor recurrence on social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Huayan Pei & Guanghui Yan & Yaning Huang, 2023. "Impact of contact rate on epidemic spreading in complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-7, April.
    18. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    19. Paluch, Robert & Gajewski, Łukasz G. & Suchecki, Krzysztof & Hołyst, Janusz A., 2021. "Impact of interactions between layers on source localization in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    20. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:3:p:561-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.