IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i6p900-906.html
   My bibliography  Save this article

Topological properties of stock networks based on minimal spanning tree and random matrix theory in financial time series

Author

Listed:
  • Eom, Cheoljun
  • Oh, Gabjin
  • Jung, Woo-Sung
  • Jeong, Hawoong
  • Kim, Seunghwan

Abstract

We investigated the topological properties of stock networks constructed by a minimal spanning tree. We compared the original stock network with the estimated network; the original network is obtained by the actual stock returns, while the estimated network is the correlation matrix created by random matrix theory. We found that the consistency between the two networks increases as more eigenvalues are considered. In addition, we suggested that the largest eigenvalue has a significant influence on the formation of stock networks.

Suggested Citation

  • Eom, Cheoljun & Oh, Gabjin & Jung, Woo-Sung & Jeong, Hawoong & Kim, Seunghwan, 2009. "Topological properties of stock networks based on minimal spanning tree and random matrix theory in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 900-906.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:6:p:900-906
    DOI: 10.1016/j.physa.2008.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108009862
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:kap:compec:v:51:y:2018:i:1:d:10.1007_s10614-016-9618-8 is not listed on IDEAS
    2. Eom, Cheoljun & Park, Jong Won, 2017. "Effects of common factors on stock correlation networks and portfolio diversification," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 1-11.
    3. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW).
    4. Eom, Cheoljun, 2017. "Two-faced property of a market factor in asset pricing and diversification effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 190-199.
    5. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 8(2), pages 1-39, May.
    6. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    7. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    8. Lee, Sangwook & Kim, Min Jae & Kim, Soo Yong, 2011. "Interest rates factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2531-2548.
    9. Linda Margarita Medina Herrera & Ernesto Pacheco Velázquez, 2011. "Comparando distancias en los mercados financieros mundiales," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 6(2), pages 88-98.
    10. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    11. Linda Margarita Medina Herrera & José Benito Díaz Hernández, 2011. "Caracterización y modelado de redes: el caso de la Bolsa Mexicana de Valores," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 23-32.
    12. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    13. Radhakrishnan, Srinivasan & Duvvuru, Arjun & Sultornsanee, Sivarit & Kamarthi, Sagar, 2016. "Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 259-270.
    14. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    15. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    16. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    17. Djauhari, Maman A., 2012. "A robust filter in stock networks analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5049-5057.
    18. Hu, Sen & Yang, Hualei & Cai, Boliang & Yang, Chunxia, 2013. "Research on spatial economic structure for different economic sectors from a perspective of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3682-3697.
    19. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    20. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    21. Eom, Cheoljun & Kwon, Okyu & Jung, Woo-Sung & Kim, Seunghwan, 2010. "The effect of a market factor on information flow between stocks using the minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1643-1652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:6:p:900-906. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.