IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i5p639-650.html
   My bibliography  Save this article

Numerical irreversibility in self-gravitating small N-body systems, II: Influence of instability affected by softening parameters

Author

Listed:
  • Komatsu, Nobuyoshi
  • Kiwata, Takahiro
  • Kimura, Shigeo

Abstract

We investigate the fundamental characteristics of numerical irreversibility appearing in self-gravitating small N-body systems by means of a molecular dynamics method from the viewpoint of time-reversible dynamics. We reconsider a closed spherical system consisting of 250 point-particles interacting through the Plummer softened potential. To investigate the characteristics of numerical irreversibility, we examine the influence of the instability affected by the softening parameter for the softened potential (the instability considered here is the instability of a dynamical system in chaos theory, e.g., a separation rate of the distance between two nearby trajectories in phase space or speed space). To this end, under the restriction of constant initial energy, the softening parameter for the Plummer softened potential is varied from 0.005R to 0.050R, where R is the radius of the spherical container. We first confirm that the size of the softening parameter, i.e., the deviation of the potential from a pure gravitational potential, influences the virial ratio, the density, the pressure on the spherical container, etc., during an early stage of the relaxation process. Through a time-reversible simulation based on a velocity inversion technique, we demonstrate that numerical irreversibility due to round-off errors appears more rapidly with decreasing softening parameter. This means that the higher the instability of the system or the higher the separation rate of the distance between two nearby trajectories, the earlier the memory of the initial conditions is lost. We show that the memory loss time tm, when the simulated trajectory completely forgets its initial conditions, increases approximately linearly with the timescale of the chaotic system, i.e., the Lyapunov time tλ. In a small self-gravitating system, propagation of numerical irreversibility or loss of reversibility depends on both the energy state of the system and the instability affected by the softening parameter.

Suggested Citation

  • Komatsu, Nobuyoshi & Kiwata, Takahiro & Kimura, Shigeo, 2009. "Numerical irreversibility in self-gravitating small N-body systems, II: Influence of instability affected by softening parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 639-650.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:639-650
    DOI: 10.1016/j.physa.2008.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710800945X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:639-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.