IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i18p3917-3930.html
   My bibliography  Save this article

A refined cellular automaton model to rectify impractical vehicular movement behavior

Author

Listed:
  • Lan, Lawrence W.
  • Chiou, Yu-Chiun
  • Lin, Zih-Shin
  • Hsu, Chih-Cheng

Abstract

When implementing cellular automata (CA) into a traffic simulation, one common defect yet to be rectified is the abrupt deceleration when vehicles encounter stationary obstacles or traffic jams. To be more in line with real world vehicular movement, this paper proposes a piecewise-linear movement to replace the conventional particle-hopping movement adopted in most previous CA models. Upon this adjustment and coupled with refined cell system, a new CA model is developed using the rationale of Forbes’ et al. car-following concept. The proposed CA model is validated on a two-lane freeway mainline context. It shows that this model can fix the unrealistic deceleration behaviors, and thus can reflect genuine driver behavior in the real world. The model is also capable of revealing Kerner’s three-phase traffic patterns and phase transitions among them. Furthermore, the proposed CA model is applied to simulate a highway work zone wherein traffic efficiency (maximum flow rates) and safety (speed deviations) impacted by various control schemes are tested.

Suggested Citation

  • Lan, Lawrence W. & Chiou, Yu-Chiun & Lin, Zih-Shin & Hsu, Chih-Cheng, 2009. "A refined cellular automaton model to rectify impractical vehicular movement behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3917-3930.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:18:p:3917-3930
    DOI: 10.1016/j.physa.2009.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109004245
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pal, Dibyendu & Mallikarjuna, C., 2010. "Cellular Automata cell structure for modeling heterogeneous traffic," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 45, pages 50-63.
    2. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Kokubo, Satoshi & Tanimoto, Jun & Hagishima, Aya, 2011. "A new Cellular Automata Model including a decelerating damping effect to reproduce Kerner’s three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 561-568.
    5. Hu, Xiaojian & Wang, Wei & Yang, Haifei, 2012. "Mixed traffic flow model considering illegal lane-changing behavior: Simulations in the framework of Kerner’s three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5102-5111.
    6. Hou, Guangyang & Chen, Suren & Bao, Yulong, 2022. "Development of travel time functions for disrupted urban arterials with microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:18:p:3917-3930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.