IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i5p1200-1204.html
   My bibliography  Save this article

A note on the effects of replenishment of depleted cells on HIV infection dynamics: A graph-theoretic approach

Author

Listed:
  • Mukwembi, Simon

Abstract

We study the effects of the rate of replacement of dead cells by either healthy cells or by infected cells on HIV infection dynamics through a graph-theoretic approach. Our framework takes into account a reasonable amount of the immune action to any pathogen and the local cell interactions that occur in the lymph nodes. Our results, in an extremal case where dead cells are highly likely to be replaced by healthy cells, show that all cells become healthy in a finite number of steps of given order and infection stops propagating. Further, for this extremal case, we give an algebraic formula for the number of infected cells at any given time in the HIV progression. We also find a sufficient condition, determined by dead cell replacement rate, which guarantees that an infected patient is continually positive, and give bounds on the number of infected, healthy and dead cells at any given time. We apply our theoretical results to a recently proposed model of the HIV infection dynamics.

Suggested Citation

  • Mukwembi, Simon, 2008. "A note on the effects of replenishment of depleted cells on HIV infection dynamics: A graph-theoretic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1200-1204.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:5:p:1200-1204
    DOI: 10.1016/j.physa.2007.10.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107011302
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.10.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benyoussef, A & HafidAllah, N.El & ElKenz, A & Ez-Zahraouy, H & Loulidi, M, 2003. "Dynamics of HIV infection on 2D cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 506-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nyabadza, F. & Mukwembi, S. & Rodrigues, B.G., 2011. "A graph theoretical perspective of a drug abuse epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1723-1732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Precharattana, Monamorn & Triampo, Wannapong, 2014. "Modeling dynamics of HIV infected cells using stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 303-311.
    2. González, Ramón E.R. & Figueirêdo, P.H. & Coutinho, S., 2020. "Dynamics of HIV Infection: An entropic–energetic view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. González, Ramón E.R. & de Figueirêdo, Pedro Hugo & Coutinho, Sérgio, 2013. "Cellular automata approach for the dynamics of HIV infection under antiretroviral therapies: The role of the virus diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4717-4725.
    4. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.
    5. Huiyu Xuan & Lida Xu & Lu Li, 2009. "A CA-based epidemic model for HIV/AIDS transmission with heterogeneity," Annals of Operations Research, Springer, vol. 168(1), pages 81-99, April.
    6. Pan, Qiuhui & Liu, Rui & He, Mingfeng, 2014. "An epidemic model based on individuals with movement characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 157-162.

    More about this item

    Keywords

    Graph; Lymph node; HIV;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:5:p:1200-1204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.