Author
Abstract
We introduce a stochastic model of 2D Brownian vortices associated with the canonical ensemble. The point vortices evolve through their usual mutual advection but they experience in addition a random velocity and a systematic drift generated by the system as a whole. The statistical equilibrium state of this stochastic model is the Gibbs canonical distribution. We consider a single species system and a system made of two types of vortices with positive and negative circulations. At positive temperatures, like-sign vortices repel each other (“plasma” case) and at negative temperatures, like-sign vortices attract each other (“gravity” case). We derive the stochastic equation satisfied by the exact vorticity field and the Fokker–Planck equation satisfied by the N-body distribution function. We present the BBGKY-like hierarchy of equations satisfied by the reduced distribution functions and close the hierarchy by considering an expansion of the solutions in powers of 1/N, where N is the number of vortices, in a proper thermodynamic limit. For spatially inhomogeneous systems, we derive the kinetic equations satisfied by the smooth vorticity field in a mean field approximation valid for N→+∞. For spatially homogeneous systems, we study the two-body correlation function, in a Debye–Hückel approximation valid at the order O(1/N). The results of this paper can also apply to other systems of random walkers with long-range interactions such as self-gravitating Brownian particles and bacterial populations experiencing chemotaxis. Furthermore, for positive temperatures, our study provides a kinetic derivation, from microscopic stochastic processes, of the Debye–Hückel model of electrolytes.
Suggested Citation
Chavanis, Pierre-Henri, 2008.
"Two-dimensional Brownian vortices,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(28), pages 6917-6942.
Handle:
RePEc:eee:phsmap:v:387:y:2008:i:28:p:6917-6942
DOI: 10.1016/j.physa.2008.09.019
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:28:p:6917-6942. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.