IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i26p6679-6685.html
   My bibliography  Save this article

Correlated noise induced spatiotemporal coherence resonance in a square lattice network

Author

Listed:
  • Sun, Xiaojuan
  • Lu, Qishao
  • Kurths, Jürgen

Abstract

The effects of additive correlated noise, which is composed of common Gaussian white noise and local Gaussian colored noise, on a square lattice network locally modelled by the Rulkov map are studied. We focus on the ability of noise to induce pattern formation in a resonant manner. It is shown that local Gaussian colored noise is able to induce pattern formation, which is more coherent at some noise intensity or correlation time, so it is able to induce spatiotemporal coherence resonance in the network. When common Gaussian white noise is applied in addition, it is seen that the correlated noise can induce coherent spatial structures at some intermediate noise correlation, while this is not the case for smaller and larger noise intensities. The mechanism of the observed spatiotemporal coherence resonance is discussed. It is also found that the correlation time of local colored noise has no evident effect on the optimal value of the noise strength for spatiotemporal coherence resonance in the network.

Suggested Citation

  • Sun, Xiaojuan & Lu, Qishao & Kurths, Jürgen, 2008. "Correlated noise induced spatiotemporal coherence resonance in a square lattice network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6679-6685.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:26:p:6679-6685
    DOI: 10.1016/j.physa.2008.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108007450
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perc, Matjaž, 2007. "Fluctuating excitability: A mechanism for self-sustained information flow in excitable arrays," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1118-1124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Ruoxing & Xu, Yong & Li, Yongge & Kurths, Jürgen, 2020. "The steady current analysis in a periodic channel driven by correlated noises," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Wu, Hao & Jiang, Huijun & Hou, Zhonghuai, 2011. "Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 836-844.
    3. Masoliver, Maria & Masoller, Cristina & Zakharova, Anna, 2021. "Control of coherence resonance in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iqbal, Naveed & Wu, Ranchao & Liu, Biao, 2017. "Pattern formation by super-diffusion in FitzHugh–Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 245-258.
    2. Song, Aiguo & Duan, Jianghai & Wu, Juan & Li, Huijun, 2009. "Design 2D nonlinear system for information storage," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 157-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:26:p:6679-6685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.