IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i25p6319-6329.html
   My bibliography  Save this article

An ever-closer union? Examining the evolution of linkages of European equity markets via minimum spanning trees

Author

Listed:
  • Gilmore, Claire G.
  • Lucey, Brian M.
  • Boscia, Marian

Abstract

The concept of a minimum spanning tree (MST) is used to study the process of comovements for 21 European Union stock market indices. We show how the minimum spanning tree and its related hierarchical tree evolve over time and describe the dynamics. Over the period studied, 1999–2006, the French equity market provides the main linkages in the system. The 2004 Accession states are more loosely connected to the other markets; they form two groupings, with the Czech Republic, Hungary, and Poland having tighter links to the main markets than the remaining Accession markets. Shorter distances between markets indicate a potential reduction of the benefits of international portfolio diversification in European markets, with the possible exception of those markets at the outer limits of the MST.

Suggested Citation

  • Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian, 2008. "An ever-closer union? Examining the evolution of linkages of European equity markets via minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6319-6329.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:25:p:6319-6329
    DOI: 10.1016/j.physa.2008.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108006171
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    2. Kantar, Ersin & Keskin, Mustafa, 2013. "The relationships between electricity consumption and GDP in Asian countries, using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5678-5684.
    3. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW).
    4. Kantar, Ersin & Aslan, Alper & Deviren, Bayram & Keskin, Mustafa, 2016. "Hierarchical structure of the countries based on electricity consumption and economic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 1-10.
    5. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    6. Tiago Trancoso, 2013. "Global macroeconomic interdependence: a minimum spanning tree approach," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 5(1), pages 179-189, June.
    7. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    8. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    9. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2012. "Stock market networks: The dynamic conditional correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4147-4158.
    10. Ulusoy, Tolga & Keskin, Mustafa & Shirvani, Ayoub & Deviren, Bayram & Kantar, Ersin & Çaǧrı Dönmez, Cem, 2012. "Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5121-5131.
    11. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    12. Deviren, Seyma Akkaya & Deviren, Bayram, 2016. "The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 429-439.
    13. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    14. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    15. Khaldoun Khashanah & Linyan Miao, 2011. "Dynamic structure of the US financial systems," Studies in Economics and Finance, Emerald Group Publishing, vol. 28(4), pages 321-339, October.
    16. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 8(2), pages 1-19, June.
    17. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    18. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    19. Kazemilari, Mansooreh & Djauhari, Maman Abdurachman, 2015. "Correlation network analysis for multi-dimensional data in stocks market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 62-75.

    More about this item

    Keywords

    Econophysics; Minimum spanning trees;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:25:p:6319-6329. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.