Author
Listed:
- Craig, A.
- Terentjev, E.M.
- Edwards, S.F.
Abstract
This work re-examines the classical problem of polymer collapse in a random system, using a Gaussian variational formalism to treat the “poor solvent” case. In particular we seek to clarify some of the disputed questions related to symmetry breaking between the replicas used to analyze such quenched systems, and the scaling of the globular collapse with the disorder strength. We map the random system to a chain with attractive interactions in the standard way, and conduct a variational analysis along with a detailed examination of the theory's stability to replica symmetry breaking. The results suggest that replica symmetry is in fact not broken by the collapse of the chain in a random-disordered system, and that inclusion of a positive third, or higher, virial coefficient is crucial to stabilize the theory. For three dimensions, we find the globule square radius falling as (α-2ω)2, where α and ω are proportional to the second and third virial coefficients, respectively. This is in keeping with the earliest results of the replica-symmetric argument advanced by Edwards and Muthukumar [J. Chem. Phys. 89 (1988) 2435], but we anticipate a different scaling with dimensionality in other cases, with the globule square radius scaling as l(α,ω)2/(d-2) for d<4, where l is some linear function. This result agrees a scaling argument regarding the chain in a random potential like that put forth by Cates and Ball [J. Phys. (France) 49 (1988) 2009], but with a repulsive third virial coefficient present.
Suggested Citation
Craig, A. & Terentjev, E.M. & Edwards, S.F., 2007.
"Polymer localization in random potential,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 150-164.
Handle:
RePEc:eee:phsmap:v:384:y:2007:i:2:p:150-164
DOI: 10.1016/j.physa.2007.05.024
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:150-164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.