IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v355y2005i2p439-460.html
   My bibliography  Save this article

Model for the respiratory modulation of the heart beat-to-beat time interval series

Author

Listed:
  • Capurro, Alberto
  • Diambra, Luis
  • Malta, C.P.

Abstract

In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

Suggested Citation

  • Capurro, Alberto & Diambra, Luis & Malta, C.P., 2005. "Model for the respiratory modulation of the heart beat-to-beat time interval series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 439-460.
  • Handle: RePEc:eee:phsmap:v:355:y:2005:i:2:p:439-460
    DOI: 10.1016/j.physa.2004.04.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105002682
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.04.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Capurro, Alberto & Malta, Coraci P. & Diambra, Luis & Contreras, Paola & Migliaro, Eduardo R., 2007. "Respiratory modulation of heart beat-to-beat interval in diabetic patients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 336-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:355:y:2005:i:2:p:439-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.