IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v325y2003i3p347-360.html
   My bibliography  Save this article

The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow

Author

Listed:
  • Zhu, H.P
  • Yu, A.B

Abstract

The couple stress of a three-dimensional vertical granular flow is investigated by means of a combined approach of discrete element method and averaging method. The velocity, mass density and couple stress are quantified under various flow conditions. The velocity and mass density profiles are illustrated to be consistent with those obtained by the previous experiments and numerical simulations, confirming the validity of the proposed approach. The couple stress profiles are shown to be significantly affected by the wall supporting the vertical flow, and be contributed by the rolling resistance due to the asymmetrical normal traction distributions in the contact areas between particles and between particle and wall. For mono-sized particles, the couple stress far from the wall can be ignored although it may vary slightly causing the fluctuation of flow behavior; however, the couple stress in the region close to a wall must be taken into account to properly describe the flow behavior of particles. For multi-sized particle, the couple stress is mainly contributed by the sliding resistance and to a less degree by the rolling resistance; the transport of particle plays a limited role. Implication of the present numerical results to continuum modeling is also discussed.

Suggested Citation

  • Zhu, H.P & Yu, A.B, 2003. "The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 347-360.
  • Handle: RePEc:eee:phsmap:v:325:y:2003:i:3:p:347-360
    DOI: 10.1016/S0378-4371(03)00143-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103001432
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(03)00143-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Chuang & Li, Chengbo, 2016. "Influence of rolling resistance on the shear curve of granular particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 44-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:325:y:2003:i:3:p:347-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.