Author
Listed:
- Szeftel, Jacob
- Laurent-Gengoux, Pascal
- Ilisca, Ernest
- Hebbache, Mohamed
Abstract
The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi–Pasta–Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.
Suggested Citation
Szeftel, Jacob & Laurent-Gengoux, Pascal & Ilisca, Ernest & Hebbache, Mohamed, 2000.
"Properties of one-dimensional anharmonic lattice solitons,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 288(1), pages 225-243.
Handle:
RePEc:eee:phsmap:v:288:y:2000:i:1:p:225-243
DOI: 10.1016/S0378-4371(00)00424-6
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:288:y:2000:i:1:p:225-243. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.