IDEAS home Printed from
   My bibliography  Save this article

Tiger and Rabbits: a single trap and many random walkers


  • Taitelbaum, Haim
  • Koza, Zbigniew
  • Yanir, Tomer
  • Weiss, George H


We study a one-dimensional system with a single trap (Tiger) initially located at the origin, and many random-walkers (Rabbits) initially uniformly distributed throughout the infinite or the semi-infinite space. For a mobile imperfect trap, we study the spatiotemporal properties of the system, such as the trapping rate, the particle distribution and the segregation around the trap, all as a function of the diffusivities of both the trap and the walkers. For a static trap, we present results of various measures of segregation, in particular on a few types of disordered chains, such as random local bias fields (the Sinai model) and random transition rates.

Suggested Citation

  • Taitelbaum, Haim & Koza, Zbigniew & Yanir, Tomer & Weiss, George H, 1999. "Tiger and Rabbits: a single trap and many random walkers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 280-290.
  • Handle: RePEc:eee:phsmap:v:266:y:1999:i:1:p:280-290 DOI: 10.1016/S0378-4371(98)00604-9

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Quispel, G.R.W. & Capel, H.W. & Papageorgiou, V.G. & Nijhoff, F.W., 1991. "Integrable mappings derived from soliton equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 173(1), pages 243-266.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:266:y:1999:i:1:p:280-290. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.