IDEAS home Printed from
   My bibliography  Save this article

Dynamics in discrete phase spaces and time interval operators


  • Galetti, D.
  • Ruzzi, M.


The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl–Schwinger algebra.

Suggested Citation

  • Galetti, D. & Ruzzi, M., 1999. "Dynamics in discrete phase spaces and time interval operators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 473-491.
  • Handle: RePEc:eee:phsmap:v:264:y:1999:i:3:p:473-491
    DOI: 10.1016/S0378-4371(98)00457-9

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marchiolli, Marcelo A., 2003. "Nonclassical statistical properties of finite-coherent states in the framework of the Jaynes–Cummings model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 331-354.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:264:y:1999:i:3:p:473-491. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.