IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v250y1998i1p373-383.html
   My bibliography  Save this article

Critical temperature in the two-layered Ising model

Author

Listed:
  • Lipowski, A

Abstract

Using the transfer-matrix mean-field approximation we precisely calculate the critical temperature in the two-layered Ising model. When the intra-layer interactions are the same, our estimations of the shift exponent φ are in agreement with some scaling arguments which predict φ=γ, where γ is the susceptibility exponent. However, for unequal intra-layer interactions our result φ=0.5 show that scaling arguments prediction φ=γ/2 is incorrect. In this case an approximate decimation scheme is proposed which gives φ consistent with numerical calculations.

Suggested Citation

  • Lipowski, A, 1998. "Critical temperature in the two-layered Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 250(1), pages 373-383.
  • Handle: RePEc:eee:phsmap:v:250:y:1998:i:1:p:373-383
    DOI: 10.1016/S0378-4371(97)00551-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437197005517
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(97)00551-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moodie, Jordan C. & Kainth, Manjinder & Robson, Matthew R. & Long, M.W., 2020. "Transition temperature scaling in weakly coupled two-dimensional Ising models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Myshlyavtsev, A.V. & Myshlyavtseva, M.D. & Akimenko, S.S., 2020. "Classical lattice models with single-node interactions on hierarchical lattices: The two-layer Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Anisimova, G.D. & Myshlyavtsev, A.V. & Akimenko, S.S., 2021. "The two-layer Ising model on a sequence of diamond-like hierarchical lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Gharaibeh, Maen & Obeidat, Abdalla & Qaseer, Mohammad-Khair & Badarneh, Mohammad, 2020. "Compensation and critical behavior of Ising mixed spin (1-1/2-1) three layers system of cubic structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:250:y:1998:i:1:p:373-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.