IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Anomalous diffusion in one dimension

Listed author(s):
  • Balakrishnan, V.
Registered author(s):

    In view of the interest in the occurrence of anomalous diffusion (〈r2(t)〉 ∼ t2H, 0 < H < 12) in several physical circumstances, we study anomalous diffusion per se in terms of exactly solvable one-dimensional models. The basic idea is to exploit the fact that temporal correlations lead directly to anomalous diffusion, and provide solvable analogues of more realistic physical situations. We first derive a general equation for a deterministic trajectory xε(t) that comprehensively characterizes the diffusive motion, by finding the ε-quantiles of the time-dependent probability distribution. The class of all diffusion processes (or, equivalently, symmetric random walks) for which xε(t) ∼ t12, and, subsequently, xε(t) ∼ tH, is identified. Explicit solutions are presented for families of such processes. Considering random walks whose step sequences in time are governed by renewal processes, and proceeding to the continuum limit, a true generalization of Brownian motion (the latter corresponds to the limiting value H = 12) is obtained explicitly: 〈x2(t)〉 ∼ t2H; the diffusive spread of the initial condition is given by xε(t) ∼ tH; and the first passage time from the origin to the point x has a stable Lévy distribution with an exponent equal to H.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 132 (1985)
    Issue (Month): 2 ()
    Pages: 569-580

    in new window

    Handle: RePEc:eee:phsmap:v:132:y:1985:i:2:p:569-580
    DOI: 10.1016/0378-4371(85)90028-7
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:132:y:1985:i:2:p:569-580. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.