IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v82y2012i6p1112-1132.html
   My bibliography  Save this article

Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion

Author

Listed:
  • Gambino, G.
  • Lombardo, M.C.
  • Sammartino, M.

Abstract

In this work we investigate the phenomena of pattern formation and wave propagation for a reaction–diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart–Landau equation respectively.

Suggested Citation

  • Gambino, G. & Lombardo, M.C. & Sammartino, M., 2012. "Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(6), pages 1112-1132.
  • Handle: RePEc:eee:matcom:v:82:y:2012:i:6:p:1112-1132
    DOI: 10.1016/j.matcom.2011.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475411002692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hezi Yizhaq & Boris A Portnov & Ehud Meron, 2004. "A Mathematical Model of Segregation Patterns in Residential Neighbourhoods," Environment and Planning A, , vol. 36(1), pages 149-172, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohan, Nishith & Kumari, Nitu, 2021. "Positive steady states of a SI epidemic model with cross diffusion," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Peng, Yahong & Zhang, Tonghua, 2016. "Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 1-12.
    4. Deeb, Ahmad & Kalaoun, Omar & Belarbi, Rafik, 2023. "Proper Generalized Decomposition using Taylor expansion for non-linear diffusion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 71-94.
    5. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    6. Christian Kuehn & Cinzia Soresina, 2020. "Numerical continuation for a fast-reaction system and its cross-diffusion limit," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-26, April.
    7. Banda, Heather & Chapwanya, Michael & Dumani, Phindile, 2022. "Pattern formation in the Holling–Tanner predator–prey model with predator-taxis. A nonstandard finite difference approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 336-353.
    8. Zhang, Feifan & Sun, Jiamin & Tian, Wang, 2022. "Spatiotemporal pattern selection in a nontoxic-phytoplankton - toxic-phytoplankton - zooplankton model with toxin avoidance effects," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    9. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    10. Karasözen, Bülent & Mülayim, Gülden & Uzunca, Murat & Yıldız, Süleyman, 2021. "Reduced order modelling of nonlinear cross-diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 401(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:82:y:2012:i:6:p:1112-1132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.