IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v77y2008i4p331-344.html
   My bibliography  Save this article

Computer simulations of exponentially convergent networks with large impulses

Author

Listed:
  • Mohamad, Sannay

Abstract

This paper demonstrates the use of a semi-discretization technique for obtaining a discrete-time analogue of an exponentially convergent network that is subject to impulses with large magnitude. Prior to implementing the analogue for computer simulations, we investigate its exponential convergence towards a unique equilibrium state and thereby obtain a family of sufficiency conditions governing the network parameters and the impulse magnitude and frequency. Although the time-step does not appear in the conditions that govern the network parameters, its value needs to be sufficiently small in order for the analogue displays correct convergence behaviour of the network when subjected particularly to large impulses.

Suggested Citation

  • Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
  • Handle: RePEc:eee:matcom:v:77:y:2008:i:4:p:331-344
    DOI: 10.1016/j.matcom.2007.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475407001516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamad, S. & Gopalsamy, K., 2000. "Dynamics of a class of discrete-time neural networks and their continuous-time counterparts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(1), pages 1-39.
    2. Liu, Jiang, 2005. "Global exponential stability of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 935-945.
    3. Li, Yongkun & Xing, Wenya & Lu, Linghong, 2006. "Existence and global exponential stability of periodic solution of a class of neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 437-445.
    4. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    5. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    6. Mohamad, Sannay, 2007. "Exponential stability in Hopfield-type neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 456-467.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    2. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    3. Zhang, Yinping, 2009. "Stationary oscillation for nonautonomous bidirectional associative memory neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1760-1763.
    4. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    5. Huang, Zhenkun & Xia, Yonghui, 2008. "Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 489-498.
    6. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    7. Huang, Zai-Tang & Yang, Qi-Gui & Luo, Xiao-shu, 2008. "Exponential stability of impulsive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 770-780.
    8. Wen, Zhen & Sun, Jitao, 2009. "Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1829-1837.
    9. Huang, Tingwen & Li, Chuandong & Chen, Goong, 2007. "Stability of Cohen–Grossberg neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 992-996.
    10. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.
    11. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    12. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
    13. Lou, Xu Yang & Cui, Bao Tong, 2008. "Global robust dissipativity for integro-differential systems modeling neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 469-478.
    14. Huo, Hai-Feng & Li, Wan-Tong, 2009. "Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2218-2229.
    15. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    16. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    17. Mohamad, Sannay, 2007. "Exponential stability in Hopfield-type neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 456-467.
    18. Chen, Jun & Cui, Baotong, 2008. "Impulsive effects on global asymptotic stability of delay BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1115-1125.
    19. Li, Chun-Hsien & Yang, Suh-Yuh, 2009. "Existence and attractivity of periodic solutions to non-autonomous Cohen–Grossberg neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1235-1244.
    20. Sun, Yeong-Jeu & Gau, Ruey-Shyan & Hsieh, Jer-Guang, 2009. "Simple criteria for sector root clustering of uncertain systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 65-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:77:y:2008:i:4:p:331-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.