IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v24y1982i1p37-48.html
   My bibliography  Save this article

Asymptotic behavior and best approximation in computational fluid dynamics

Author

Listed:
  • Cheng, Sin-I.

Abstract

Computational fluid dynamics has many successes for the solution of simple standard problems. For relatively complex problems, especially if nonlinear and of mixed type, the computed approximate solutions are mostly of dubious accuracy and credibility. The difficulty appears fundamental. Model studies in one space dimension suggest that most of such discrete problems are poorly posed. The sequence of computed solutions at successively refined meshes need not converge; and apparently “smooth” computed approximations can “converge” to wrong limits with large global errors. For certain discrete formulations the sequence is asymptotic in the sense of displaying minimum error at some fairly large critical mesh Reynolds number (coarse meshes). This error minimum can be as small as those promised by the correct “convergent approximations” at much smaller meshes. Certain behavior of the computed solutions around such a critical mesh Reynolds number help to identify the “best approximation”. Such analytic inferences have been tested and verified in the computational solutions of successively more complex flows governed by Navier-Stokes equations in two space dimensions. The flow fields due to shockwave-laminar-boundary layer interaction were computed with different discrete formulations and various perturbations. The computed “best approximations” differ little and all compare favorably with available experimental data. Some of such formulations give the “best approximations” at reasonably coarse meshes, requiring much smaller computational effort; and should therefore be favorably considered.

Suggested Citation

  • Cheng, Sin-I., 1982. "Asymptotic behavior and best approximation in computational fluid dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 24(1), pages 37-48.
  • Handle: RePEc:eee:matcom:v:24:y:1982:i:1:p:37-48
    DOI: 10.1016/0378-4754(82)90048-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475482900489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(82)90048-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:24:y:1982:i:1:p:37-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.