IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v243y2026icp171-195.html

Delay-induced multiple stability scenarios, species coexistence, and predator extinction in an ecological system

Author

Listed:
  • Singh, Yovan
  • Ghosh, Bapan
  • Mondal, Suman

Abstract

Time delays are integral to ecological processes. Population models incorporate time delays to account for the time required for maturation, gestation, dispersal, and many more. Time delay can induce various stability dynamics, including (i) stability invariance, (i) stability change, (iii) stability switching, (iv) instability invariance, and (v) instability switching. Even one of these dynamics can occur with multiple mechanisms based on the distribution of critical time delays. Generally, two or three types of dynamics are detected in many population models, but exhibiting all the above dynamics is not observed. In an ecological system, species form groups to improve their chances of survival. Taking inspiration from tuna’s forging behavior Cosner et al. (1999) developed the Cosner functional response. In this study, we propose a delayed predator–prey model with Cosner functional response. The non-delayed model can have up to four equilibria, two coexisting equilibria (anti-saddle and saddle), along with trivial and boundary equilibria. The stability of all equilibria is analyzed with time delay. Under certain parameter conditions, the boundary equilibrium remains globally stable for all delays. For increasing delay, the anti-saddle equilibrium may: (i) remain stable, (ii) undergo stability change (two possible scenarios), (iii) undergo stability switching, (iv) remain unstable (two possible scenarios), or (v) undergo instability switching. These seven stability scenarios are verified to exhibit, while an additional instability invariance scenario, where no critical delay exists, is analytically shown to be non-existent. Showing all these mentioned stability scenarios in a predator–prey model with a single delay is a novelty of this paper. If the anti-saddle equilibrium is stable in the absence of delay, then the degenerate case may occur, which implies the local stability between any two consecutive delay thresholds. Moreover, we have analytically proved that the degenerate case is not possible if the anti-saddle equilibrium is unstable in the absence of delay, which is a new observation in population dynamics. We have computed species survival basin for increasing delay. Our investigation reveals that increasing delay can change the shape and size of the basin, making delay beneficial or harmful for the species’ survival, depending on the initial populations of species. Finally, we have proposed an open question and outlined a couple of potential directions for future research.

Suggested Citation

  • Singh, Yovan & Ghosh, Bapan & Mondal, Suman, 2026. "Delay-induced multiple stability scenarios, species coexistence, and predator extinction in an ecological system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 243(C), pages 171-195.
  • Handle: RePEc:eee:matcom:v:243:y:2026:i:c:p:171-195
    DOI: 10.1016/j.matcom.2025.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425004057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:243:y:2026:i:c:p:171-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.