IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v241y2026ipap582-590.html

A quintic polynomial spline with local shape parameters unifying approximation and interpolation

Author

Listed:
  • Li, Juncheng
  • Liu, Chengzhi

Abstract

Approximation, interpolation and shape adjustment are three fundamental techniques for parametric spline modeling. This paper introduces a quintic polynomial spline that unifies these three approaches. The proposed spline reaches C² continuity and has local shape adjustability, whether used for approximation, interpolation, or a hybrid of both. These features endow the proposed spline with clear advantages over some existing similar splines in geometric modeling.

Suggested Citation

  • Li, Juncheng & Liu, Chengzhi, 2026. "A quintic polynomial spline with local shape parameters unifying approximation and interpolation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 241(PA), pages 582-590.
  • Handle: RePEc:eee:matcom:v:241:y:2026:i:pa:p:582-590
    DOI: 10.1016/j.matcom.2025.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425004069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:241:y:2026:i:pa:p:582-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.