IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v241y2026ipap190-201.html
   My bibliography  Save this article

Boundary interpolation on triangles via neural network operators

Author

Listed:
  • Bhat, Aaqib Ayoub
  • Khan, Asif

Abstract

The primary objective of this study is to develop novel interpolation operators that interpolate the boundary values of a function defined on a triangle. This is accomplished by constructing new Generalized Boolean sum neural network operator Bn1,n2,ξℱ using a class of activation functions. Its interpolation properties are established and the estimates for the error of approximation corresponding to operator Bn1,n2,ξℱ is computed in terms of mixed modulus of continuity. Numerical examples are illustrated to show the efficacy of these newly constructed operators. Further, with the help of MATLAB (2024a), comparative and graphical analysis is given to show the validity and efficiency of the results obtained for these operators.

Suggested Citation

  • Bhat, Aaqib Ayoub & Khan, Asif, 2026. "Boundary interpolation on triangles via neural network operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 241(PA), pages 190-201.
  • Handle: RePEc:eee:matcom:v:241:y:2026:i:pa:p:190-201
    DOI: 10.1016/j.matcom.2025.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425003696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:241:y:2026:i:pa:p:190-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.