IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v237y2025icp373-389.html
   My bibliography  Save this article

Generic residential load profile generator based on weather data and occupancy

Author

Listed:
  • Lekhel, Cheikh Elekbir Sidi
  • Mbayed, Rita
  • Velihorskyi, Oleksandr
  • Husev, Oleksandr
  • Monmasson, Eric

Abstract

Due to changing policies favoring renewable energy, residential energy management increasingly requires flexible consumption forecasting to optimize energy sources and costs. This paper introduces a simple application to generate home electricity consumption profiles by combining thermal and mathematical modeling with weather forecasts, occupancy schedules, and user settings. The model classifies household loads into thermostatically controlled appliances such as heat pump, water heater, and refrigerator and those highly depend on occupant behavior like lighting, washing machine, and common ON/OFF devices. By accounting seasonal changes, occupancy schedules, and varying temperatures, the model reflects real case conditions. Validation conducted under diverse conditions in a French context reveals that daily energy consumption can range from 14 kWh to 30 kWh, underscoring the adaptability of the proposed approach with different scenarios. A fully functional prototype, deployed on a Raspberry Pi 4 and integrated with Home Assistant, computes detailed 24-hour load forecasts with a resolution of one second. This modeling framework facilitates integration into home energy management systems or demand side management, offering a model with the ability to adjust for weekday or weekend schedules. Moreover, its generic design and flexible in changing parameters enable adaptation to different household sizes, number of occupants and insulation types, making it well suited to a wide range of residential scenarios.

Suggested Citation

  • Lekhel, Cheikh Elekbir Sidi & Mbayed, Rita & Velihorskyi, Oleksandr & Husev, Oleksandr & Monmasson, Eric, 2025. "Generic residential load profile generator based on weather data and occupancy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 237(C), pages 373-389.
  • Handle: RePEc:eee:matcom:v:237:y:2025:i:c:p:373-389
    DOI: 10.1016/j.matcom.2025.04.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542500182X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.04.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wenzhi Cao & Houdun Liu & Xiangzhi Zhang & Yangyan Zeng & Xiao Ling, 2025. "Short-Term Residential Load Forecasting Based on the Fusion of Customer Load Uncertainty Feature Extraction and Meteorological Factors," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    2. Wang, Junke & Jiang, Yilin & Tang, Choon Yik & Song, Li, 2022. "Development and validation of a second-order thermal network model for residential buildings," Applied Energy, Elsevier, vol. 306(PB).
    3. Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2023. "Stochastic generation of residential load profiles with realistic variability based on wavelet-decomposed smart meter data," Applied Energy, Elsevier, vol. 350(C).
    4. La Tona, G. & Luna, M. & Di Piazza, M.C., 2024. "Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 63-75.
    5. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    3. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    4. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    5. Dumisani Mtolo & David Dorrell & Rudiren Pillay Carpanen, 2023. "Balancing of Low-Voltage Supply Network with a Smart Utility Controller Leveraging Distributed Customer Energy Sources," Energies, MDPI, vol. 16(23), pages 1-30, November.
    6. Ligai Kang & Hao Li & Zhichao Wang & Jinzhu Wang & Dongxiang Sun & Yang Yang, 2023. "Investigation of Energy Consumption via an Equivalent Thermal Resistance-Capacitance Model for a Northern Rural Residence," Energies, MDPI, vol. 16(23), pages 1-18, November.
    7. Yucheng Guo & Jie Shi & Tong Guo & Fei Guo & Feng Lu & Lingqi Su, 2024. "Grey-Box Method for Urban Building Energy Modelling: Advancements and Potentials," Energies, MDPI, vol. 17(21), pages 1-25, October.
    8. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    9. Hyeunguk Ahn & Jingjing Liu & Donghun Kim & Rongxin Yin & Tianzhen Hong & Mary Ann Piette, 2021. "How Can Floor Covering Influence Buildings’ Demand Flexibility?," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Gao, Chenge & Guo, Ye & Xu, Yinliang & Huang, Jieming & Zhang, Fan & Hu, Wuhua & Liu, Qiang, 2025. "A deep-learning approach for modeling the demand function of air conditioning resources with respect to the electricity prices," Applied Energy, Elsevier, vol. 392(C).
    11. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    12. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    13. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    15. Vogl, Jonathan & Kleinebrahm, Max & Raab, Moritz & McKenna, Russell & Fichtner, Wolf, 2025. "A review of challenges and opportunities in occupant modeling for future residential energy demand," Working Paper Series in Production and Energy 76, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2024. "Capturing multiscale temporal dynamics in synthetic residential load profiles through Generative Adversarial Networks (GANs)," Applied Energy, Elsevier, vol. 360(C).
    17. Wang, Junke & Yik Tang, Choon & Song, Li, 2022. "Analysis of precooling optimization for residential buildings," Applied Energy, Elsevier, vol. 323(C).
    18. Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
    19. Tang, Hong & Li, Bingxu & Zhang, Yingbo & Pan, Jingjing & Wang, Shengwei, 2025. "A coordinated predictive scheduling and real-time adaptive control for integrated building energy systems with hybrid storage and rooftop PV," Renewable Energy, Elsevier, vol. 239(C).
    20. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:237:y:2025:i:c:p:373-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.