IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v235y2025icp205-218.html
   My bibliography  Save this article

A splitting based method for the numerical identification of a nonlinear convection coefficient in elliptic equations

Author

Listed:
  • El Yazidi, Youness
  • Zeng, Shengda

Abstract

In this paper, we study a new class of nonlinear free convection coefficient identification problems to nonlinear elliptic equations. By introducing a least square functional depending on two state solutions and the total variation regularization term, we reformulate the addressed inverse problem into a constrained optimization problem. The existence of an optimal solution of the involved optimization problem is demonstrated. A meshless technique based on radial basis functions is employed as a discretization scheme. To handle the L1 norm of the total variation regularization functional, we employ the Alternating Direction Method of Multipliers to facilitate the minimization process. The convergence analysis of discrete optimization problem is established. At the end, several numerical examples are conducted to show the validity of the proposed numerical scheme.

Suggested Citation

  • El Yazidi, Youness & Zeng, Shengda, 2025. "A splitting based method for the numerical identification of a nonlinear convection coefficient in elliptic equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 235(C), pages 205-218.
  • Handle: RePEc:eee:matcom:v:235:y:2025:i:c:p:205-218
    DOI: 10.1016/j.matcom.2025.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425000862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:235:y:2025:i:c:p:205-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.