IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp652-672.html
   My bibliography  Save this article

The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment

Author

Listed:
  • Gupta, R.P.
  • Tiwari, Shristi
  • Kumar, Arun

Abstract

This manuscript accounts for an investigation of the complex dynamics of a spatial model for interacting populations. We discuss the existence and boundedness of solutions for the proposed spatio-temporal system. The global stability of the co-existing steady state of the proposed system is analyzed with the help of a suitable Lyapunov function. We provide results on the existence and non-existence of positive non-constant solutions of the model. The priori estimate for the positive steady state is obtained for the nonexistence of the non-constant positive steady state by using the maximum principle. The existence of a non-constant positive steady state is studied with the help of Leray–Schauder degree theory. The stability and Hopf bifurcation are briefly revisited for the co-existing steady state in the corresponding temporal model, where a bubble-like structure is observed. The onset of Hopf bifurcation has been analyzed, and different conditions for the formation of the Turing pattern have been established through diffusion-driven instability analysis. Numerical simulations are performed in detail to figure out the effects of saturated harvesting on Turing patterns. The Turing as well as non-Turing patterns in their respective domains are also examined. Finally, the criteria of Turing–Hopf bifurcation is briefly demonstrated with relevant numerical examples and corresponding plots that give a better illustration of this work.

Suggested Citation

  • Gupta, R.P. & Tiwari, Shristi & Kumar, Arun, 2025. "The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 652-672.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:652-672
    DOI: 10.1016/j.matcom.2024.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424004129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Daiyong & Yang, Youwei & Wu, Peng, 2023. "Impacts of prey-taxis and nonconstant mortality on a spatiotemporal predator–prey system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 283-300.
    2. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Chen, Mengxin & Zheng, Qianqian, 2023. "Diffusion-driven instability of a predator–prey model with interval biological coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Ramasamy, Sivasamy & Banjerdpongchai, David & Park, PooGyeon, 2025. "Stability and Hopf-bifurcation analysis of diffusive Leslie–Gower prey–predator model with the Allee effect and carry-over effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 227(C), pages 19-40.
    4. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    5. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    6. Kumar, Vikas, 2024. "Pattern formation and delay-induced instability in a Leslie–Gower type prey–predator system with Smith growth function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 78-97.
    7. Zhang, Zidie & Wu, Daiyong & Li, Nishan, 2024. "Predator invasion in a spatially heterogeneous predator-prey model with group defense and prey-taxis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 270-282.
    8. Chakraborty, Bhaskar & Marick, Sounov & Bairagi, Nandadulal, 2024. "Diffusion-driven instabilities in a tri-trophic food web model: From Turing to non-Turing patterns and waves," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Anita Triska & Agus Yodi Gunawan & Nuning Nuraini, 2023. "The Effects of the Susceptible and Infected Cross-Diffusion Terms on Pattern Formations in an SI Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    10. Sajan, & Anshu, & Dubey, Balram, 2024. "Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Kim, Hyundong & Jyoti, & Kwak, Soobin & Ham, Seokjun & Kim, Junseok, 2024. "In silico investigation of the formation of multiple intense zebra stripes using extending domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 648-658.
    12. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Owolabi, Kolade M. & Jain, Sonal, 2023. "Spatial patterns through diffusion-driven instability in modified predator–prey models with chaotic behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:652-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.