IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v213y2023icp18-39.html
   My bibliography  Save this article

A massively parallel implementation of multilevel Monte Carlo for finite element models

Author

Listed:
  • Badia, Santiago
  • Hampton, Jerrad
  • Principe, Javier

Abstract

The Multilevel Monte Carlo (MLMC) method has proven to be an effective variance-reduction statistical method for Uncertainty Quantification (UQ) in Partial Differential Equation (PDE) models, combining model computations at different levels to create an accurate estimate. Still, the computational complexity of the resulting method is extremely high, particularly for 3D models, which requires advanced algorithms for the efficient exploitation of High Performance Computing (HPC). In this article we present a new implementation of the MLMC in massively parallel computer architectures, exploiting parallelism within and between each level of the hierarchy. The numerical approximation of the PDE is performed using the finite element method but the algorithm is quite general and could be applied to other discretization methods. The two key ingredients of the implementation are a good processor partition scheme together with a good scheduling algorithm to assign work to different processors. We introduce a multiple partition of the set of processors that permits the simultaneous execution of different levels and we develop a dynamic scheduling algorithm to exploit it. The problem of finding the optimal scheduling of distributed tasks in a parallel computer is an NP-complete problem. We propose and analyze a new greedy scheduling algorithm to assign samples and we show that it is a 2-approximation, which is the best that may be expected under general assumptions. On top of this result we design a distributed memory implementation using the Message Passing Interface (MPI) standard. Finally we present a set of numerical experiments illustrating its scalability properties.

Suggested Citation

  • Badia, Santiago & Hampton, Jerrad & Principe, Javier, 2023. "A massively parallel implementation of multilevel Monte Carlo for finite element models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 213(C), pages 18-39.
  • Handle: RePEc:eee:matcom:v:213:y:2023:i:c:p:18-39
    DOI: 10.1016/j.matcom.2023.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423002239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:213:y:2023:i:c:p:18-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.