IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp254-274.html
   My bibliography  Save this article

Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes

Author

Listed:
  • Kumar, Sachin
  • Kumar, Amit

Abstract

In this present paper, we obtain hyperbolic, exponential, trigonometric function, other soliton solutions, and their combinations for the cold bosonic atoms in a zig-zag optical lattice model based on two efficient methods, such as the generalized Riccati equation mapping (GREM) method and generalized Kudryashov (GK) method. The used techniques are very reliable and effective tools and provide numerous exact soliton solutions of the nonlinear PDE. The zig-zag optical lattice model, widely used to represent the nonlinear wave and the soliton dynamics in fluid dynamics and plasma physics, is examined in this article to obtain exact optical soliton solutions and study their physical properties. For this, we first convert a partial differential equation (PDE) into an ordinary differential equation (ODE) by employing wave transformation and then split the equation into imaginary and real parts. The derived optical soliton solutions are illustrated graphically using Mathematica software to distinguish constant parameter values. Consequently, bell-shape, anti-bell-shape, traveling wave, periodic, mix periodic, singular soliton, and some new types of solitons demonstrate to validate these acquired outcomes with physical phenomena and make the results worthy. Furthermore, the 3D, 2D, and contour graphs are sketched to assign suitable constant parameters to illustrate the physical phenomena of the obtained solutions. The accomplished soliton solutions indicate that the applied computational system is a direct, reliable, productive, and more complex physical phenomenon. Symbolic computation is used in the software package Mathematica to obtain the various soliton solutions and different dynamical behavior of the newly formed solutions

Suggested Citation

  • Kumar, Sachin & Kumar, Amit, 2022. "Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 254-274.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:254-274
    DOI: 10.1016/j.matcom.2022.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    2. Zhu, Shun-dong, 2008. "The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1335-1342.
    3. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wael W. Mohammed & Farah M. Al-Askar & Clemente Cesarano & M. El-Morshedy, 2023. "On the Dynamics of Solitary Waves to a (3+1)-Dimensional Stochastic Boiti–Leon–Manna–Pempinelli Model in Incompressible Fluid," Mathematics, MDPI, vol. 11(10), pages 1-9, May.
    2. Aljohani, A.F. & Alqurashi, Bader Mutair & Kara, A.H., 2021. "Solitons, travelling waves, invariance, conservation laws and ‘approximate’ conservation of the extended Jimbo-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Bo Xu & Sheng Zhang, 2022. "Analytical Method for Generalized Nonlinear Schrödinger Equation with Time-Varying Coefficients: Lax Representation, Riemann-Hilbert Problem Solutions," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    4. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Ullah, Mohammad Safi & Baleanu, Dumitru & Ali, M. Zulfikar & Harun-Or-Roshid,, 2023. "Novel dynamics of the Zoomeron model via different analytical methods," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Khaled A. Gepreel, 2020. "Analytical Methods for Nonlinear Evolution Equations in Mathematical Physics," Mathematics, MDPI, vol. 8(12), pages 1-14, December.
    7. Kumar, Sachin & Dhiman, Shubham Kumar & Chauhan, Astha, 2022. "Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 319-335.
    8. Arzu Akbulut & Melike Kaplan & Rubayyi T. Alqahtani & W. Eltayeb Ahmed, 2023. "On the Dynamics of the Complex Hirota-Dynamical Model," Mathematics, MDPI, vol. 11(23), pages 1-12, December.
    9. Melike Kaplan & Arzu Akbulut & Rubayyi T. Alqahtani, 2023. "New Solitary Wave Patterns of the Fokas System in Fiber Optics," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    10. Seadawy, Aly R. & Ali, Asghar & Althobaiti, Saad & Sayed, Samy, 2021. "Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    12. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    13. Li, Hui & Li, Ye-Zhou, 2018. "Meromorphic exact solutions of two extended (3+1)-dimensional Jimbo–Miwa equations," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 369-375.
    14. Bashir, Azhar & Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R., 2022. "The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    15. El-Ganaini, Shoukry & Kumar, Sachin, 2023. "Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new impr," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 28-56.
    16. Biswas, Swapan & Ghosh, Uttam & Raut, Santanu, 2023. "Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Hayman Thabet & Subhash Kendre & Dimplekumar Chalishajar, 2017. "New Analytical Technique for Solving a System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-15, September.
    18. Aly R. Seadawy & Hanadi Zahed & Syed T. R. Rizvi, 2022. "Diverse Forms of Breathers and Rogue Wave Solutions for the Complex Cubic Quintic Ginzburg Landau Equation with Intrapulse Raman Scattering," Mathematics, MDPI, vol. 10(11), pages 1-22, May.
    19. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. El-Ganaini, Shoukry & Kumar, Hitender, 2020. "A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low- pass electrical transmission lines," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:254-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.