IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v194y2022icp141-158.html
   My bibliography  Save this article

Localised spatial structures in the Thomas model

Author

Listed:
  • Al Saadi, Fahad
  • Worthy, Annette
  • Alrihieli, Haifaa
  • Nelson, Mark

Abstract

The Thomas model is a system of two reaction–diffusion equations which was originally proposed in the context of enzyme kinetics. It was subsequently realised that it offers a plausible chemical mechanism for the generation of coat markings on mammals. To that end previous investigations have focused on establishing the conditions for the Turing instability and on following the associated patterns as the bifurcation parameter increases through the instability.

Suggested Citation

  • Al Saadi, Fahad & Worthy, Annette & Alrihieli, Haifaa & Nelson, Mark, 2022. "Localised spatial structures in the Thomas model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 141-158.
  • Handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:141-158
    DOI: 10.1016/j.matcom.2021.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rionero, Salvatore & Vitiello, Maria, 2012. "Long-time behavior of the solutions of Murray–Thomas model for interacting chemicals," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1597-1614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haifaa Alrihieli & Mohammed Alrehili & Ahmed M. Megahed, 2022. "Radiative MHD Nanofluid Flow Due to a Linearly Stretching Sheet with Convective Heating and Viscous Dissipation," Mathematics, MDPI, vol. 10(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capone, F. & Carfora, M.F. & De Luca, R. & Torcicollo, I., 2018. "On the dynamics of an intraguild predator–prey model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 17-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:141-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.