Cubature rules based on a bivariate degree-graded alternative orthogonal basis and their applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2021.05.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oğuz, Cem & Sezer, Mehmet, 2015. "Chelyshkov collocation method for a class of mixed functional integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 943-954.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rahimkhani, P. & Ordokhani, Y., 2022. "Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
- Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Kürkçü, Ömür Kıvanç & Aslan, Ersin & Sezer, Mehmet, 2016. "A numerical approach with error estimation to solve general integro-differential–difference equations using Dickson polynomials," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 324-339.
- Balcı, Mehmet Ali & Sezer, Mehmet, 2016. "Hybrid Euler–Taylor matrix method for solving of generalized linear Fredholm integro-differential difference equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 33-41.
- Çayan, Seda & Özhan, B. Burak & Sezer, Mehmet, 2022. "A Taylor-Splitting Collocation approach and applications to linear and nonlinear engineering models," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Nikooeinejad, Z. & Heydari, M. & Loghmani, G.B., 2022. "A numerical iterative method for solving two-point BVPs in infinite-horizon nonzero-sum differential games: Economic applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 404-427.
More about this item
Keywords
Cubature rules; Alternative shifted Jacobi polynomials; Multi-dimensional integral equations; Operational matrices; Epidemic models; Computational complexity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:231-245. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.