IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v187y2021icp614-629.html
   My bibliography  Save this article

A boundary shape function iterative method for solving nonlinear singular boundary value problems

Author

Listed:
  • Liu, Chein-Shan
  • El-Zahar, Essam R.
  • Chang, Chih-Wen

Abstract

In this paper, a novel iterative algorithm is developed to solve second-order nonlinear singular boundary value problem, whose solution exactly satisfies the Robin boundary conditions specified on the boundaries of a unit interval. The boundary shape function is designed such that the boundary conditions can be fulfilled automatically, which renders a new algorithm with the solution playing the role of a boundary shape function. When the free function is viewed as a new variable, the original singular boundary value problem can be properly transformed to an initial value problem. For the new variable the initial values are given, whereas two unknown terminal values are determined iteratively by integrating the transformed ordinary differential equation to obtain the new terminal values until they are convergent. As a consequence, very accurate solutions for the nonlinear singular boundary value problems can be obtained through a few iterations. The present method is different from the traditional shooting method, which needs to guess initial values and solve nonlinear algebraic equations to approximate the missing initial values. As practical applications of the present method, we solve the Blasius equation for describing the boundary layer behavior of fluid flow over a flat plate, where the Crocco transformation is employed to transform the third-order differential equation to a second-order singular differential equation. We also solve a nonlinear singular differential equation of a pressurized spherical membrane with a strong singularity.

Suggested Citation

  • Liu, Chein-Shan & El-Zahar, Essam R. & Chang, Chih-Wen, 2021. "A boundary shape function iterative method for solving nonlinear singular boundary value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 614-629.
  • Handle: RePEc:eee:matcom:v:187:y:2021:i:c:p:614-629
    DOI: 10.1016/j.matcom.2021.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421001051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Aimin & Lin, Ji & Liu, Chein-Shan, 2022. "Boundary shape function iterative method for nonlinear second-order boundary value problems with nonlinear boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 539-551.
    2. Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2022. "Higher-Order Asymptotic Numerical Solutions for Singularly Perturbed Problems with Variable Coefficients," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
    3. Ramos, Higinio & Rufai, Mufutau Ajani, 2022. "An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane–Emden–Fowler type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 497-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:187:y:2021:i:c:p:614-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.