IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v121y2016icp12-33.html
   My bibliography  Save this article

Stability, bifurcations and synchronization in a delayed neural network model of n-identical neurons

Author

Listed:
  • Kundu, Amitava
  • Das, Pritha
  • Roy, A.B.

Abstract

This paper deals with dynamic behaviors of Hopfield type neural network model of n(≥3) identical neurons with two time-delayed connections coupled in a star configuration. Delay dependent as well as independent local stability conditions about trivial equilibrium is found. Considering synaptic weight and time delay as parameters Hopf-bifurcation, steady-state bifurcation and equivariant steady state bifurcation criteria are given. The criterion for the global stability of the system is presented by constructing a suitable Lyapunov functional. Also conditions for absolute synchronization about the trivial equilibrium are also shown. Using normal form method and the center manifold theory the direction of the Hopf-bifurcation, stability and the properties of Hopf-bifurcating periodic solutions are determined. Numerical simulations are presented to verify the analytical results. The effect of synaptic weight and delay on different types of oscillations, e.g. in-phase, phase-locking, standing wave and oscillation death, has been shown numerically.

Suggested Citation

  • Kundu, Amitava & Das, Pritha & Roy, A.B., 2016. "Stability, bifurcations and synchronization in a delayed neural network model of n-identical neurons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 12-33.
  • Handle: RePEc:eee:matcom:v:121:y:2016:i:c:p:12-33
    DOI: 10.1016/j.matcom.2015.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415001500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Yuan, 2007. "Dynamics in a delayed-neural network," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 443-454.
    2. Tu, Fenghua & Liao, Xiaofeng & Zhang, Wei, 2006. "Delay-dependent asymptotic stability of a two-neuron system with different time delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 437-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prants, Fabiola G. & Rech, Paulo C., 2017. "Complex dynamics of a three-dimensional continuous-time autonomous system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 132-139.
    2. Pradeep, C. & Cao, Yang & Murugesu, R. & Rakkiyappan, R., 2019. "An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 41-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaofan & Yang, Maobin & Liu, Huaiyi & Liao, Xiaofeng, 2008. "Bautin bifurcation in a class of two-neuron networks with resonant bilinear terms," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 575-589.
    2. Tian, Junkang & Xiong, Lianglin & Liu, Jianxing & Xie, Xiangjun, 2009. "Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1858-1866.
    3. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    4. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    5. Guan, Zhi-Hong & Zhang, Hao & Yang, Shuang-Hua, 2008. "Robust passive control for Internet-based switching systems with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 479-486.
    6. Xiong, Wenjun & Liang, Jinling, 2007. "Novel stability criteria for neutral systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1735-1741.
    7. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2007. "Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 997-1005.
    8. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    9. Tian, Xiaohong & Xu, Rui & Gan, Qintao, 2015. "Hopf bifurcation analysis of a BAM neural network with multiple time delays and diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 909-926.
    10. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "New robust stability condition for uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1073-1079.
    11. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    12. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "Novel robust stability criteria of uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 771-777.
    13. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    14. Zhang, Chunrui & Zheng, Baodong, 2009. "Bifurcation in Z2-symmetry quadratic polynomial systems with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3078-3086.
    15. Singh, Vimal, 2007. "On global robust stability of interval Hopfield neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1183-1188.
    16. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    17. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2008. "New delay-dependent stability criteria of uncertain linear systems with multiple time-varying state delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 157-165.
    18. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    19. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:121:y:2016:i:c:p:12-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.