IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v96y2025ics0957178725001079.html

Network optimization and deployment for carbon capture and storage in China's coal-fired power plants

Author

Listed:
  • Yuan, Jiahai
  • Wang, Yao
  • Wang, Ying
  • Liu, Yuanxin
  • Zhang, Jian
  • Zhang, Haonan

Abstract

The low-carbon energy transition and sustainable development are crucial for addressing global climate change. As the only technology currently capable of achieving large-scale decarbonization of fossil fuels, carbon capture and storage (CCS) technology is essential, especially for China, which heavily relies on coal-fired power generation. This study proposes a novel method for optimizing the network of coal-fired power plants equipped with carbon capture and storage (CCS) technology. To address the needs of China's transition strategy and industrial policy, we investigate the deployment trajectories of coal-fired power plants with CCS under different carbon quota constraints and various coal-fired power development scenarios. We found that, depending on future transition scenarios, the deployment scale of CCS coal-fired power plants ranges from 33.26 GW to 406.4 GW. Specifically, around 30 GW–60 GW will need to be deployed by 2035, with an additional 70 GW–150 GW required by 2050. Failure to accelerate early deployment could significantly increase the pressure on the coal power sector to reduce emissions and hinder the overall carbon reduction process in China. The coal-fired units needing retrofitting are primarily concentrated in the 'Three North' regions, and with larger deployment scales, this will gradually spread to Central and Eastern China. Inner Mongolia, Shandong, and Xinjiang will bear the highest capture cost expenditures. The total length of CO2 transportation pipelines may reach up to 25 thousand km, with many pipelines requiring cross-provincial or cross-regional construction. Lastly, based on the findings of this study, development suggestions are proposed for advancing coal power CCS.

Suggested Citation

  • Yuan, Jiahai & Wang, Yao & Wang, Ying & Liu, Yuanxin & Zhang, Jian & Zhang, Haonan, 2025. "Network optimization and deployment for carbon capture and storage in China's coal-fired power plants," Utilities Policy, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:juipol:v:96:y:2025:i:c:s0957178725001079
    DOI: 10.1016/j.jup.2025.101992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178725001079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2025.101992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Jing-Li & Li, Zezheng & Ding, Zixia & Li, Kai & Zhang, Xian, 2023. "Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models," Energy Economics, Elsevier, vol. 126(C).
    2. Jing-Li Fan & Jingying Fu & Xian Zhang & Kai Li & Wenlong Zhou & Klaus Hubacek & Johannes Urpelainen & Shuo Shen & Shiyan Chang & Siyue Guo & Xi Lu, 2023. "Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation," Nature Climate Change, Nature, vol. 13(8), pages 807-815, August.
    3. Yang, Lin & Xu, Mao & Yang, Yuantao & Fan, Jingli & Zhang, Xian, 2019. "Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China," Applied Energy, Elsevier, vol. 255(C).
    4. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    5. Zheng, Jiali & Duan, Hongbo & Zhou, Sheng & Wang, Shouyang & Gao, Ji & Jiang, Kejun & Gao, Shuo, 2021. "Limiting global warming to below 1.5 °C from 2 °C: An energy-system-based multi-model analysis for China," Energy Economics, Elsevier, vol. 100(C).
    6. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    2. Zhang, Jing & Liu, Yu & Yang, Lingyu & Zhang, Jinzhu & Li, Xinbei, 2025. "An assessment of the effectiveness of CCS technology incentive policies based on dynamic CGE model," Energy Policy, Elsevier, vol. 198(C).
    3. Zhang, Weiwei & Wang, Yuanrong & Chen, Ximei & Li, Yunzhuo & Dai, He, 2025. "Exploring the diffusion mechanisms of CCS-EOR technology: A quadripartite evolutionary game," Energy, Elsevier, vol. 320(C).
    4. Bo Sun & Jiajia Tao, 2024. "Investment Decisions of CCUS Projects in China Considering the Supply–Demand Relationship of CO 2 from the Industry Symbiosis Perspective," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    5. Li, Zezheng & Zhu, Nenggao & Wen, Xin & Liu, Yu, 2025. "Assessment the impact of power generation hours on the abatement costs of CCUS on coal-fired power plants in China," Energy Economics, Elsevier, vol. 144(C).
    6. Wang, Peng-Tao & Zhang, Yi-Xiang & Wang, Fei-Yin & Xu, Mao, 2025. "Carbon capture, utilization, and storage in China's high-emission industries: Optimal deployment under carbon neutrality goals," Energy, Elsevier, vol. 323(C).
    7. Zhang, Qi & Liu, Jiangfeng & Wang, Ge & Gao, Zhihui, 2024. "A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability," Applied Energy, Elsevier, vol. 363(C).
    8. Lv, Xiaoyan & Li, Xingmei & Tan, Qinliang & Jia, Dongqing, 2025. "Does coordination with renewable energy through virtual power plants enhance the transition willingness of coal-fired power plants? An evidence from city in China," Energy Economics, Elsevier, vol. 148(C).
    9. Su, Qing & Zhou, Peng & Ding, Hao, 2025. "Portfolio optimization of diversified energy transition investments with multiple risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    10. Chu, Baoju & Lin, Boqiang & Tian, Lichun & Zheng, Chaofeng & Ye, Nan & Zhu, Yafang & Tan, Zhizhou, 2024. "A long-term impact assessment of carbon capture (storage) investment conducted by conventional power company on sustainable development," Applied Energy, Elsevier, vol. 358(C).
    11. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    12. Sun, Bo & Fan, Boyang & Wu, Chun & Xie, Jingdong, 2024. "Exploring incentive mechanisms for the CCUS project in China's coal-fired power plants: An option-game approach," Energy, Elsevier, vol. 288(C).
    13. Zhang, Zhiying & Chen, Yu & Chen, Xiaoyuan & Liao, Huchang, 2024. "A real options-based framework for multi-generation liquid air energy storage investment decision under multiple uncertainties and policy incentives," Energy, Elsevier, vol. 309(C).
    14. Gu, Changwan & Li, Kai & Gao, Shikang & Li, Jiayu & Mao, Yifan, 2024. "CO2 abatement feasibility for blast furnace CCUS retrofits in BF-BOF steel plants in China," Energy, Elsevier, vol. 294(C).
    15. Li, Jingjing & Wang, Zhaoxin & Li, Hui & Jiao, Jianling, 2024. "Which policy can effectively promote the formal recycling of power batteries in China?," Energy, Elsevier, vol. 299(C).
    16. Zhou, Wenlong & Fan, Wenrong & Lan, Rujia & Su, Wenlong & Fan, Jing-Li, 2025. "Retrofitted CCS technologies enhance economy, security, and equity in achieving carbon zero in power sector," Applied Energy, Elsevier, vol. 378(PA).
    17. Chen, Yiwen & Paulus, Nora & Wan, Xi & Zou, Benteng, 2024. "Optimal timing of carbon capture and storage policies — A social planner’s view," Energy Economics, Elsevier, vol. 136(C).
    18. Tan, Zhizhou & Huang, Hui & Lin, Boqiang, 2024. "Impact assessment of the residual lifespan of coal-fired power plants on the investment risk of carbon capture and storage retrofit," Energy, Elsevier, vol. 307(C).
    19. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).
    20. Yang, Lingyu & Zhang, Jing & Li, Xinbei & Zhu, Nenggao & Liu, Yu, 2024. "The moderating effect of emission reduction policies on CCS mitigation efficiency," Applied Energy, Elsevier, vol. 376(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:96:y:2025:i:c:s0957178725001079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.