IDEAS home Printed from
   My bibliography  Save this article

Conservative linear programming with mixed multiple objectives


  • Soyster, AL
  • Lev, B
  • Toof, DI


In an ordinary linear program a single objective vector is constructed and one attempts to choose a decision vector to optimize this objective. Often multiple criteria exist or exact estimates for the components of a single objective vector are not entirely clear. For these cases a conservative decision-maker may want to choose an alternative that maximizes the objective value under the worst foreseeable circumstances. Herein we develop a unified framework for applying the maximin criterion to problems with various degrees of uncertainty attached to the objective vector. Three cases are solved via linear programming: (1) Complete Information, (2) Partial Information, and (3) Total Ignorance. It is shown that the functional value of the maximin solution decreases in a convex manner with increasing uncertainty. In addition certain relationships between maximin and efficient solutions are provided. Finally, an extension to integer constrained decision variables is presented.

Suggested Citation

  • Soyster, AL & Lev, B & Toof, DI, 1977. "Conservative linear programming with mixed multiple objectives," Omega, Elsevier, vol. 5(2), pages 193-205.
  • Handle: RePEc:eee:jomega:v:5:y:1977:i:2:p:193-205

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:5:y:1977:i:2:p:193-205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.