IDEAS home Printed from
   My bibliography  Save this article

On minimaxity and admissibility of hierarchical Bayes estimators


  • Kubokawa, Tatsuya
  • Strawderman, William E.


This paper obtains conditions for minimaxity of hierarchical Bayes estimators in the estimation of a mean vector of a multivariate normal distribution. Hierarchical prior distributions with three types of second stage priors are treated. Conditions for admissibility and inadmissibility of the hierarchical Bayes estimators are also derived using the arguments in Berger and Strawderman [Choice of hierarchical priors: admissibility in estimation of normal means, Ann. Statist. 24 (1996) 931-951]. Combining these results yields admissible and minimax hierarchical Bayes estimators.

Suggested Citation

  • Kubokawa, Tatsuya & Strawderman, William E., 2007. "On minimaxity and admissibility of hierarchical Bayes estimators," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 829-851, April.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:829-851

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tatsuya Kubokawa & William E. Strawderman, 2011. "Admissibility and Minimaxity of Benchmarked Shrinkage Estimators," CIRJE F-Series CIRJE-F-809, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tsukuma, Hisayuki, 2008. "Admissibility and minimaxity of Bayes estimators for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2251-2264, November.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:829-851. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.