IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v86y2003i1p14-27.html
   My bibliography  Save this article

Estimation of a parameter vector when some components are restricted

Author

Listed:
  • Fourdrinier, Dominique
  • Ouassou, Idir
  • Strawderman, William E.

Abstract

We consider the problem of estimating a p-dimensional parameter [theta]=([theta]1,...,[theta]p) when the observation is a p+k vector (X,U) where dim X=p and where U is a residual vector with dim U=k. The distributional assumption is that (X,U) has a spherically symmetric distribution around ([theta],0). Two restrictions on the parameter [theta] are considered. First we assume that [theta]i[greater-or-equal, slanted]0 for i=1,...,p and, secondly, we suppose that only a subset of these [theta]i are nonnegative. For these two settings, we give a class of estimators [delta](X,U)=[delta]0(X)+g(X)U'U which dominate, under the usual quadratic loss, a natural estimator [delta]0(X) which corresponds to the MLE in the normal case. Lastly, we deal with the situation where the parameter [theta] belongs to a cone of . We show that, under suitable condition, domination of the natural estimator adapted to this problem can be extended to a larger cone containing and to any orthogonal transformation of this cone.

Suggested Citation

  • Fourdrinier, Dominique & Ouassou, Idir & Strawderman, William E., 2003. "Estimation of a parameter vector when some components are restricted," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 14-27, July.
  • Handle: RePEc:eee:jmvana:v:86:y:2003:i:1:p:14-27
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00045-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouassou, Idir & Strawderman, William E., 2002. "Estimation of a parameter vector restricted to a cone," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 121-129, January.
    2. Cellier, D. & Fourdrinier, D., 1995. "Shrinkage Estimators under Spherical Symmetry for the General Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 338-351, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fourdrinier, Dominique & Strawderman, William E., 2008. "A unified and generalized set of shrinkage bounds on minimax Stein estimates," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2221-2233, November.
    2. Chang, Yuan-Tsung & Matsuda, Takeru & Strawderman, William E., 2019. "A note on improving on a vector of coordinate-wise estimators of non-negative means via shrinkage," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 143-150.
    3. Dominique Fourdrinier & William Strawderman & Martin Wells, 2006. "Estimation of a Location Parameter with Restrictions or “vague information” for Spherically Symmetric Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 73-92, March.
    4. Hisayuki Tsukuma, 2012. "Simultaneous estimation of restricted location parameters based on permutation and sign-change," Statistical Papers, Springer, vol. 53(4), pages 915-934, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurélie Boisbunon & Stéphane Canu & Dominique Fourdrinier & William Strawderman & Martin T. Wells, 2014. "Akaike's Information Criterion, C p and Estimators of Loss for Elliptically Symmetric Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 422-439, December.
    2. He Kun & Strawderman William E., 2001. "Estimation In Spherically Symmetric Regression With Random Design," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 41-50, January.
    3. Kazuhiro Ohtani, 1998. "An MSE comparison of the restricted Stein-rule and minimum mean squared error estimators in regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 361-376, December.
    4. Hisayuki Tsukuma, 2012. "Simultaneous estimation of restricted location parameters based on permutation and sign-change," Statistical Papers, Springer, vol. 53(4), pages 915-934, November.
    5. Jurečková Jana & Sen P. K., 2006. "Robust multivariate location estimation, admissibility, and shrinkage phenomenon," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 273-290, December.
    6. Dominique Fourdrinier & William Strawderman & Martin Wells, 2006. "Estimation of a Location Parameter with Restrictions or “vague information” for Spherically Symmetric Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 73-92, March.
    7. Fourdrinier, Dominique & Strawderman, William E., 2008. "A unified and generalized set of shrinkage bounds on minimax Stein estimates," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2221-2233, November.
    8. Fourdrinier Dominique & Strawderman William E. & Wells Martin T., 2009. "Improved estimation for elliptically symmetric distributions with unknown block diagonal covariance matrix," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 203-217, April.
    9. Dominique Fourdrinier & William Strawderman, 2015. "Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 461-484, May.
    10. Fourdrinier, Dominique & Strawderman, William E. & Wells, Martin T., 2003. "Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 24-39, April.
    11. Dey, Dipak K. & Ghosh, Malay & Strawderman, William E., 1999. "On estimation with balanced loss functions," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 97-101, November.
    12. Marchand, Éric & Perron, François, 2005. "Improving on the mle of a bounded location parameter for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 227-238, February.
    13. Chang, Yuan-Tsung & Matsuda, Takeru & Strawderman, William E., 2019. "A note on improving on a vector of coordinate-wise estimators of non-negative means via shrinkage," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 143-150.
    14. Ouassou, Idir & Strawderman, William E., 2002. "Estimation of a parameter vector restricted to a cone," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 121-129, January.
    15. Tsukuma Hisayuki, 2009. "Shrinkage estimation in elliptically contoured distribution with restricted parameter space," Statistics & Risk Modeling, De Gruyter, vol. 27(1), pages 25-35, November.
    16. Kubokawa, T. & Srivastava, M. S., 2001. "Robust Improvement in Estimation of a Mean Matrix in an Elliptically Contoured Distribution," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 138-152, January.
    17. Dominique Fourdrinier & Tatsuya Kubokawa & William E. Strawderman, 2023. "Shrinkage Estimation of a Location Parameter for a Multivariate Skew Elliptic Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 808-828, February.
    18. Fourdrinier Dominique & Lemaire Anne-Sophie, 2000. "ESTIMATION OF THE MEAN OF A e1-EXPONENTIAL MULTIVARIATE DISTRIBUTION," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 259-274, March.
    19. Amirdjanova, Anna & Woodroofe, Michael, 2004. "Shrinkage estimation for convex polyhedral cones," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 87-94, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:86:y:2003:i:1:p:14-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.