IDEAS home Printed from
   My bibliography  Save this article

Another Look at Principal Curves and Surfaces


  • Delicado, Pedro


Principal curves have been defined as smooth curves passing through the "middle" of a multidimensional data set. They are nonlinear generalizations of the first principal component, a characterization of which is the basis of the definition of principal curves. We establish a new characterization of the first principal component and base our new definition of a principal curve on this property. We introduce the notion of principal oriented points and we prove the existence of principal curves passing through these points. We extend the definition of principal curves to multivariate data sets and propose an algorithm to find them. The new notions lead us to generalize the definition of total variance. Successive principal curves are recursively defined from this generalization. The new methods are illustrated on simulated and real data sets.

Suggested Citation

  • Delicado, Pedro, 2001. "Another Look at Principal Curves and Surfaces," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 84-116, April.
  • Handle: RePEc:eee:jmvana:v:77:y:2001:i:1:p:84-116

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jamshid Etezadi-Amoli & Roderick McDonald, 1983. "A second generation nonlinear factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 315-342, September.
    2. Victor Yohai & Werner Ackermann & Cristina Haigh, 1985. "Nonlinear principal components," Quality & Quantity: International Journal of Methodology, Springer, vol. 19(1), pages 53-69, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Serge Iovleff, 2015. "Probabilistic auto-associative models and semi-linear PCA," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 267-286, September.
    2. Salinelli, Ernesto, 2009. "Nonlinear principal components, II: Characterization of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 652-660, April.
    3. Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
    4. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    5. Pedro Delicado, 1998. "Statistics in archaeology: New directions," Economics Working Papers 310, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Girard, Stéphane & Iovleff, Serge, 2005. "Auto-associative models and generalized principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 21-39, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:77:y:2001:i:1:p:84-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.