IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v206y2025ics0047259x24001040.html
   My bibliography  Save this article

Equality tests of covariance matrices under a low-dimensional factor structure

Author

Listed:
  • Hyodo, Masashi
  • Nishiyama, Takahiro
  • Watanabe, Hiroki
  • Nakagawa, Tomoyuki
  • Tahata, Kouji

Abstract

We propose an equality test to compare two covariance matrices in a high-dimensional framework while accommodating a low-dimensional latent factor model. We show that null limiting distributions of the test statistics follow a weighted mixture of chi-square distributions under a high-dimensional asymptotic regime combined with weak technical conditions. This distribution depends on the noise covariance matrix and the number of latent factors. Because latent factors are often unknown, we employ an estimation that builds on recent advances in random matrix theory. A numerical study demonstrates the asymptotic power of the proposed test and confirms its favorable analytical properties compared to existing procedures.

Suggested Citation

  • Hyodo, Masashi & Nishiyama, Takahiro & Watanabe, Hiroki & Nakagawa, Tomoyuki & Tahata, Kouji, 2025. "Equality tests of covariance matrices under a low-dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001040
    DOI: 10.1016/j.jmva.2024.105397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24001040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Wang, 2012. "Factor profiled sure independence screening," Biometrika, Biometrika Trust, vol. 99(1), pages 15-28.
    2. Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2023. "A Behrens–Fisher problem for general factor models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    3. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
    4. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    6. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    7. Chung Dongjun & Keles Sunduz, 2010. "Sparse Partial Least Squares Classification for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2023. "A Behrens–Fisher problem for general factor models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    2. Mingxiang Cao & Yuanjing He, 2022. "A high-dimensional test on linear hypothesis of means under a low-dimensional factor model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 557-572, July.
    3. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
    4. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    5. Wang, Rui & Xu, Xingzhong, 2018. "On two-sample mean tests under spiked covariances," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 225-249.
    6. Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.
    7. Du, Lilun & Lan, Wei & Luo, Ronghua & Zhong, Pingshou, 2018. "Factor-adjusted multiple testing of correlations," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 34-47.
    8. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
    10. Zhu, Xuehu & Guo, Xu & Wang, Tao & Zhu, Lixing, 2020. "Dimensionality determination: A thresholding double ridge ratio approach," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
    11. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    12. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    14. Givord, Pauline & Quantin, Simon & Trevien, Corentin, 2018. "A long-term evaluation of the first generation of French urban enterprise zones," Journal of Urban Economics, Elsevier, vol. 105(C), pages 149-161.
    15. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    16. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    17. Wei, Jie & Chen, Hui, 2020. "Determining the number of factors in approximate factor models by twice K-fold cross validation," Economics Letters, Elsevier, vol. 191(C).
    18. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    19. Zhang, Yangchun & Zhou, Yirui & Liu, Xiaowei, 2023. "Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    20. Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.