IDEAS home Printed from
   My bibliography  Save this article

The theory of concentrated Langevin distributions


  • Watson, Geoffrey S.


The density of the Langevin (or Fisher-Von Mises) distribution is proportional to exp ?[mu]'x, where x and the modal vector [mu] are unit vectors in q. ? (>=0) is called the concentration parameter. The distribution of statistics for testing hypotheses about the modal vectors of m distributions simplify greatly as the concentration parameters tend to infinity. The non-null distributions are obtained for statistics appropriate when ?1,...,?m are known but tend to infinity, and are unknown but equal to ? which tends to infinity. The three null hypotheses are H01:[mu] = [mu]0(m=1), H02:[mu]1= ... =[mu]m, H03:[mu]i [epsilon] V, I=1,...,m In each case a sequence of alternatives is taken tending to the null hypothesis.

Suggested Citation

  • Watson, Geoffrey S., 1984. "The theory of concentrated Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 74-82, February.
  • Handle: RePEc:eee:jmvana:v:14:y:1984:i:1:p:74-82

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Davy Paindaveine & Thomas Verdebout, 2019. "Inference for Spherical Location under High Concentration," Working Papers ECARES 2019-02, ULB -- Universite Libre de Bruxelles.
    2. Chikuse, Yasuko, 2003. "Concentrated matrix Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 375-394, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:14:y:1984:i:1:p:74-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.