IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v140y2015icp1-18.html
   My bibliography  Save this article

Optimal level sets for bivariate density representation

Author

Listed:
  • Delicado, Pedro
  • Vieu, Philippe

Abstract

In bivariate density representation there is an extensive literature on level set estimation when the level is fixed, but this is not so much the case when choosing which level is (or which levels are) of most interest. This is an important practical question which depends on the kind of problem one has to deal with as well as the kind of feature one wishes to highlight in the density, the answer to which requires both the definition of what the optimal level is and the construction of a method for finding it. We consider two scenarios for this problem. The first one corresponds to situations in which one has just a single density function to be represented. However, as a result of the technical progress in data collecting, problems are emerging in which one has to deal with a sample of densities. In these situations, the need arises to develop joint representation for all these densities, and this is the second scenario considered in this paper. For each case, we provide consistency results for the estimated levels and present wide Monte Carlo simulated experiments illustrating the interest and feasibility of the proposed method.

Suggested Citation

  • Delicado, Pedro & Vieu, Philippe, 2015. "Optimal level sets for bivariate density representation," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 1-18.
  • Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:1-18
    DOI: 10.1016/j.jmva.2015.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baíllo, Amparo & Cuesta-Albertos, Juan A. & Cuevas, Antonio, 2001. "Convergence rates in nonparametric estimation of level sets," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 27-35, May.
    2. Cao, Ricardo & Cuevas, Antonio & Fraiman, Ricardo, 1995. "Minimum distance density-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 611-631, December.
    3. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    4. Ren, Qunshu & Mojirsheibani, Majid, 2008. "Nonparametric estimation of level sets under minimal assumptions," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3029-3033, December.
    5. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    6. Duong, Tarn, 2007. "ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Bongiorno, Enea G. & Goia, Aldo, 2019. "Describing the concentration of income populations by functional principal component analysis on Lorenz curves," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 10-24.
    3. Pedro Delicado & Philippe Vieu, 2017. "Choosing the most relevant level sets for depicting a sample of densities," Computational Statistics, Springer, vol. 32(3), pages 1083-1113, September.
    4. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Di Bernardino & Thomas Laloë & Véronique Maume-Deschamps & Clémentine Prieur, 2013. "Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory," Post-Print hal-00580624, HAL.
    2. Pedro Delicado & Philippe Vieu, 2017. "Choosing the most relevant level sets for depicting a sample of densities," Computational Statistics, Springer, vol. 32(3), pages 1083-1113, September.
    3. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    4. Lasse Holmström & Kyösti Karttunen & Jussi Klemelä, 2017. "Estimation of level set trees using adaptive partitions," Computational Statistics, Springer, vol. 32(3), pages 1139-1163, September.
    5. Dau, Hai Dang & Laloë, Thomas & Servien, Rémi, 2020. "Exact asymptotic limit for kernel estimation of regression level sets," Statistics & Probability Letters, Elsevier, vol. 161(C).
    6. Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
    7. Ge, Suqin & Macieira, João, 2020. "Unobserved Worker Quality and Inter-Industry Wage Differentials," GLO Discussion Paper Series 491, Global Labor Organization (GLO).
    8. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    9. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    10. Chiwoo Park & Jianhua Z. Huang & Yu Ding, 2010. "A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection," Operations Research, INFORMS, vol. 58(5), pages 1469-1480, October.
    11. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    12. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    14. Jitka Machalová & Renáta Talská & Karel Hron & Aleš Gába, 2021. "Compositional splines for representation of density functions," Computational Statistics, Springer, vol. 36(2), pages 1031-1064, June.
    15. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    16. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    17. Pablo Martínez-Camblor & Sonia Pérez-Fernández & Susana Díaz-Coto, 2021. "Optimal classification scores based on multivariate marker transformations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 581-599, December.
    18. Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
    19. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
    20. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.