IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v10y1980i1p51-59.html
   My bibliography  Save this article

The inverted complex Wishart distribution and its application to spectral estimation

Author

Listed:
  • Shaman, Paul

Abstract

The inverted complex Wishart distribution and its use for the construction of spectral estimates are studied. The density, some marginals of the distribution, and the first- and second-order moments are given. For a vector-valued time series, estimation of the spectral density at a collection of frequencies and estimation of the increments of the spectral distribution function in each of a set of frequency bands are considered. A formal procedure applies Bayes theorem, where the complex Wishart is used to represent the distribution of an average of adjacent periodogram values. A conjugate prior distribution for each parameter is an inverted complex Wishart distribution. Use of the procedure for estimation of a 2 - 2 spectral density matrix is discussed.

Suggested Citation

  • Shaman, Paul, 1980. "The inverted complex Wishart distribution and its application to spectral estimation," Journal of Multivariate Analysis, Elsevier, vol. 10(1), pages 51-59, March.
  • Handle: RePEc:eee:jmvana:v:10:y:1980:i:1:p:51-59
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(80)90081-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
    2. Chalfant, James & Collender, Robert N. & Subramanfar, Shankar, 1988. "The Mean and Variance of the Mean-Variance Decision Rule," CUDARE Working Papers 198476, University of California, Berkeley, Department of Agricultural and Resource Economics.
    3. Chalfant, James A. & Callender, Robert N. & Subramanian, Shankar, 1988. "The Mean And Variance Of The Mean-Variance Decision Rule," Department of Economics and Business - Archive 259434, North Carolina State University, Department of Economics.
    4. Withers, Christopher S. & Nadarajah, Saralees, 2012. "Moments and cumulants for the complex Wishart," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 242-247.
    5. Daya K. Nagar & Alejandro Roldán-Correa & Saralees Nadarajah, 2023. "Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix," Mathematics, MDPI, vol. 11(9), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:10:y:1980:i:1:p:51-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.