IDEAS home Printed from
   My bibliography  Save this article

Estimation of parameters in the growth curve model via an outer product least squares approach for covariance


  • Hu, Jianhua
  • Liu, Fuxiang
  • Ahmed, S. Ejaz


In this paper, we propose a framework of outer product least squares for covariance (COPLS) to directly estimate covariance in the growth curve model based on an analogy, between the outer product of a data vector and covariance of a random vector, and the ordinary least squares technique. The COPLS estimator of covariance has an explicit expression and is shown to have the following properties: (1) following a linear transformation of two independent Wishart distribution for a normal error matrix; (2) having asymptotic normality for a nonnormal error matrix; and (3) having unbiasedness and invariance under a linear transformation group. And, a corresponding two-stage generalized least squares (GLS) estimator for the regression coefficient matrix in the model is obtained and its asymptotic normality is investigated. Simulation studies confirm that the COPLS estimator and the two-stage GLS estimator of the regression coefficient matrix are satisfying competitors with some evident merits to the existing maximum likelihood estimator in finite samples.

Suggested Citation

  • Hu, Jianhua & Liu, Fuxiang & Ahmed, S. Ejaz, 2012. "Estimation of parameters in the growth curve model via an outer product least squares approach for covariance," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 53-66.
  • Handle: RePEc:eee:jmvana:v:108:y:2012:i:c:p:53-66
    DOI: 10.1016/j.jmva.2012.02.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hu, Jianhua, 2008. "Wishartness and independence of matrix quadratic forms in a normal random matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 555-571, March.
    2. von Rosen, Dietrich, 1989. "Maximum likelihood estimators in multivariate linear normal models," Journal of Multivariate Analysis, Elsevier, vol. 31(2), pages 187-200, November.
    3. Ohlson, Martin & von Rosen, Dietrich, 2010. "Explicit estimators of parameters in the Growth Curve model with linearly structured covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1284-1295, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hu, Jianhua & Xin, Xin & You, Jinhong, 2014. "Model determination and estimation for the growth curve model via group SCAD penalty," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 199-213.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:108:y:2012:i:c:p:53-66. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.