IDEAS home Printed from
   My bibliography  Save this article

Dual divergence estimators and tests: Robustness results


  • Toma, Aida
  • Broniatowski, Michel


The class of dual [phi]-divergence estimators (introduced in Broniatowski and Keziou (2009) [5]) is explored with respect to robustness through the influence function approach. For scale and location models, this class is investigated in terms of robustness and asymptotic relative efficiency. Some hypothesis tests based on dual divergence criteria are proposed and their robustness properties are studied. The empirical performances of these estimators and tests are illustrated by Monte Carlo simulation for both non-contaminated and contaminated data.

Suggested Citation

  • Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:1:p:20-36

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Broniatowski, Michel & Keziou, Amor, 2009. "Parametric estimation and tests through divergences and the duality technique," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 16-36, January.
    2. Rosario Dell'Aquila & Elvezio Ronchetti, 2004. "Robust tests of predictive accuracy," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 161-184.
    3. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    4. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    5. Toma, Aida, 2009. "Optimal robust M-estimators using divergences," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 1-5, January.
    6. Raúl Jiménz & Yongzhao Shao, 2001. "On robustness and efficiency of minimum divergence estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 241-248, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Avijit Maji & Abhik Ghosh & Ayanendranath Basu, 2016. "The logarithmic super divergence and asymptotic inference properties," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(1), pages 99-131, January.
    2. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    3. Broniatowski, Michel, 2014. "Minimum divergence estimators, maximum likelihood and exponential families," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 27-33.
    4. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.
    5. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    6. Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
    7. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:1:p:20-36. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.