IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i3p541-554.html
   My bibliography  Save this article

Likelihood ratio tests of correlated multivariate samples

Author

Listed:
  • Lim, Johan
  • Li, Erning
  • Lee, Shin-Jae

Abstract

We develop methods to compare multiple multivariate normally distributed samples which may be correlated. The methods are new in the context that no assumption is made about the correlations among the samples. Three types of null hypotheses are considered: equality of mean vectors, homogeneity of covariance matrices, and equality of both mean vectors and covariance matrices. We demonstrate that the likelihood ratio test statistics have finite-sample distributions that are functions of two independent Wishart variables and dependent on the covariance matrix of the combined multiple populations. Asymptotic calculations show that the likelihood ratio test statistics converge in distribution to central Chi-squared distributions under the null hypotheses regardless of how the populations are correlated. Following these theoretical findings, we propose a resampling procedure for the implementation of the likelihood ratio tests in which no restrictive assumption is imposed on the structures of the covariance matrices. The empirical size and power of the test procedure are investigated for various sample sizes via simulations. Two examples are provided for illustration. The results show good performance of the methods in terms of test validity and power.

Suggested Citation

  • Lim, Johan & Li, Erning & Lee, Shin-Jae, 2010. "Likelihood ratio tests of correlated multivariate samples," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 541-554, March.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:3:p:541-554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00202-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erning Li & Johan Lim & Kyunga Kim & Shin-Jae Lee, 2012. "Distribution-free tests of mean vectors and covariance matrices for multivariate paired data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 833-854, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:3:p:541-554. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.