IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i4p1428-1449.html
   My bibliography  Save this article

Predicting the relative performance among financial assets: A comparative analysis of different approaches

Author

Listed:
  • Samartzis, Panagiotis

Abstract

We perform a comparative analysis of a wide array of approaches for the problem of forecasting the relative performance among different tradable assets in the framework of the M6 competition. To produce the forecasts, we employ various models spanning probabilistic, classification, and time-series methods, each approaching the problem from a different perspective. We demonstrate that in the case of financial forecasting, simple machine learning approaches have better performance compared to more complex deep-learning models. Furthermore, approaching the problem as a classification task appears to be beneficial. We also confirm findings from existing literature that using simple ensemble techniques can improve performance, and that forecasting performance is better for exchange-traded funds and assets that have lower idiosyncratic volatility. Finally, we benchmark our results against the performance of teams that participated in the M6 competition.

Suggested Citation

  • Samartzis, Panagiotis, 2025. "Predicting the relative performance among financial assets: A comparative analysis of different approaches," International Journal of Forecasting, Elsevier, vol. 41(4), pages 1428-1449.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1428-1449
    DOI: 10.1016/j.ijforecast.2024.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024001365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G1 - Financial Economics - - General Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1428-1449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.