IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v30y2002i2p231-241.html
   My bibliography  Save this article

Some characteristics of a surplus process in the presence of an upper barrier

Author

Listed:
  • Wang, Nan
  • Politis, Konstadinos

Abstract

No abstract is available for this item.

Suggested Citation

  • Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
  • Handle: RePEc:eee:insuma:v:30:y:2002:i:2:p:231-241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(02)00105-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Picard, Philippe & Lefevre, Claude, 1994. "On the first crossing of the surplus process with a given upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 163-179, May.
    2. Picard, Philippe, 1994. "On some measures of the severity of ruin in the classical Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 107-115, May.
    3. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    4. Gerber, Hans U., 1990. "When does the surplus reach a given target?," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 115-119, September.
    5. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 17(02), pages 151-163, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaowen, 2004. "When does surplus reach a certain level before ruin?," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 553-561, December.
    2. Frostig, Esther, 2005. "The expected time to ruin in a risk process with constant barrier via martingales," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 216-228, October.
    3. Rulliere, Didier & Loisel, Stephane, 2005. "The win-first probability under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 421-442, December.
    4. Dassios, Angelos & Wu, Shanle, 2009. "On barrier strategy dividends with Parisian implementation delay for classical surplus processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 195-202, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:30:y:2002:i:2:p:231-241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.