IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v15y2021i1s175115772030626x.html
   My bibliography  Save this article

SciKGraph: A knowledge graph approach to structure a scientific field

Author

Listed:
  • Tosi, Mauro Dalle Lucca
  • dos Reis, Julio Cesar

Abstract

Understanding the structure of a scientific domain and extracting specific information from it is laborious. The high amount of manual effort required to this end indicates that the way knowledge has been structured and visualized until the present day should be improved in software tools. Nowadays, scientific domains are organized based on citation networks or bag-of-words techniques, disregarding the intrinsic semantics of concepts presented in literature documents. We propose a novel approach to structure scientific fields, which uses semantic analysis from natural language texts to construct knowledge graphs. Then, our approach clusters knowledge graphs in their main topics and automatically extracts information such as the most relevant concepts in topics and overlapping concepts between topics. We evaluate the proposed model in two datasets from distinct areas. The results achieve up to 84% of accuracy in the task of document classification without using annotated data to segment topics from a set of input documents. Our solution identifies coherent keyphrases and key concepts considering the dataset used. The SciKGraph framework contributes by structuring knowledge that might aid researchers in the study of their areas, reducing the effort and amount of time devoted to groundwork.

Suggested Citation

  • Tosi, Mauro Dalle Lucca & dos Reis, Julio Cesar, 2021. "SciKGraph: A knowledge graph approach to structure a scientific field," Journal of Informetrics, Elsevier, vol. 15(1).
  • Handle: RePEc:eee:infome:v:15:y:2021:i:1:s175115772030626x
    DOI: 10.1016/j.joi.2020.101109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175115772030626X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2020.101109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. van Eck, Nees Jan & Waltman, Ludo, 2014. "CitNetExplorer: A new software tool for analyzing and visualizing citation networks," Journal of Informetrics, Elsevier, vol. 8(4), pages 802-823.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Chyi-Kwei Yau & Alan Porter & Nils Newman & Arho Suominen, 2014. "Clustering scientific documents with topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 767-786, September.
    5. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    6. Garfield, Eugene, 2009. "From the science of science to Scientometrics visualizing the history of science with HistCite software," Journal of Informetrics, Elsevier, vol. 3(3), pages 173-179.
    7. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    8. Juan Ruiz-Rosero & Gustavo Ramirez-Gonzalez & Jesus Viveros-Delgado, 2019. "Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1165-1188, November.
    9. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caixia Rong & Wenxue Fu, 2023. "A Comprehensive Review of Land Use and Land Cover Change Based on Knowledge Graph and Bibliometric Analyses," Land, MDPI, vol. 12(8), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Thor & Lutz Bornmann & Werner Marx & Rüdiger Mutz, 2018. "Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 591-608, July.
    2. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    3. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    4. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    5. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    6. Moaaz Kabil & Mohamed Abouelseoud & Faisal Alsubaie & Heba Mostafa Hassan & Imre Varga & Katalin Csobán & Lóránt Dénes Dávid, 2022. "Evolutionary Relationship between Tourism and Real Estate: Evidence and Research Trends," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    7. Jensen, Scott & Liu, Xiaozhong & Yu, Yingying & Milojevic, Staša, 2016. "Generation of topic evolution trees from heterogeneous bibliographic networks," Journal of Informetrics, Elsevier, vol. 10(2), pages 606-621.
    8. Xinxin Wang & Zeshui Xu & Yong Qin, 2022. "Structure, trend and prospect of operational research: a scientific analysis for publications from 1952 to 2020 included in Web of Science database," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 649-672, December.
    9. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    10. Klaus Kammerer & Manuel Göster & Manfred Reichert & Rüdiger Pryss, 2021. "Ambalytics: A Scalable and Distributed System Architecture Concept for Bibliometric Network Analyses," Future Internet, MDPI, vol. 13(8), pages 1-29, August.
    11. Jiaojiao Yang & Ting Wang & Yujie Hu & Qiyun Deng & Shu Mo, 2023. "Comparative Analysis of Research Trends and Hotspots of Foreign and Chinese Building Carbon Emissions Based on Bibliometrics," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    12. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2022. "Green energy adoption and its determinants: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Matilde Lafuente-Lechuga & Javier Cifuentes-Faura & Ursula Faura-Martínez, 2021. "Sustainability, Big Data and Mathematical Techniques: A Bibliometric Review," Mathematics, MDPI, vol. 9(20), pages 1-21, October.
    14. Moaaz Kabil & Setiawan Priatmoko & Róbert Magda & Lóránt Dénes Dávid, 2021. "Blue Economy and Coastal Tourism: A Comprehensive Visualization Bibliometric Analysis," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    15. Kun Shi & Yi Zhou & Zhen Zhang, 2021. "Mapping the Research Trends of Household Waste Recycling: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    16. Tingcan Ma & Ruinan Li & Guiyan Ou & Mingliang Yue, 2018. "Topic based research competitiveness evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 789-803, November.
    17. Tong Chen & Mo Wang & Jin Su & Jianjun Li, 2023. "Unlocking the Positive Impact of Bio-Swales on Hydrology, Water Quality, and Biodiversity: A Bibliometric Review," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    18. Zoltán Lakner & Brigitta Plasek & Gyula Kasza & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Towards Understanding the Food Consumer Behavior–Food Safety–Sustainability Triangle: A Bibliometric Approach," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    19. Tao Liu & Nicole Wassell & John Liu & Meiqi Zhang, 2022. "Mapping Research Trends of Adapted Sport from 2001 to 2020: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(19), pages 1-13, October.
    20. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:15:y:2021:i:1:s175115772030626x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.